TABLE OF CONTENTS

SECT	ΓΙΟΝ		Page
EXE	CUTIV	VE SUMMARY	ii
ACK	NOWI	LEDGEMENTS	iv
LIST	OF IL	LUSTRATIONS	xii
LIST	OF TA	ABLES	vii
1.0	INTI	RODUCTION	1
2.0	STA	TEMENT OF PROBLEM/SCOPE OF WORK	2
3.0	OBJ	ECTIVES	2
	3.1 3.2	Geotechnical Databases Site Specific Earthquake Hazards Assessments	2
4.0	MISS 4.1	SOURI DEPARTMENT OF TRANSPORTATION GEOTECHNICAL DATABASE Design	3
		4.1.1 Design Approach4.1.2 A Geotechnical Generic Example4.1.3 Analysis and Data Structure	4 5 6
	4.2 4.3	Implementation Link to Spatial Database (GIS)	8
5.0	SITE 5.1	Field Investigations 5.1.1 Drilling and Sampling 5.1.2 Test Pits 5.1.3 Cone Penetrometer Testing 5.1.4 Surface Mapping	8 9 9 9
	5.2	 5.1.5 Interviews with Local Personnel Laboratory Investigations 5.2.1 Missouri Department of Transportation Laboratory Soil Testing 5.2.2 University of Missouri-Rolla Laboratory Soil Testing 5.2.2.1 Consolidated Undrained (CU) Triaxial Tests 5.2.2.2 Cyclic Triaxial Tests 	10 10 10 10 11 11
	5.3	Base Rock Motion Determination 5.3.1 Current Peak Ground Acceleration 5.3.2 Magnitudes and Distances for the Recommended Acceleration Value 5.3.3 Time Histories	11 11

	5.4	Seisn	nic Response of Soil	14
		5.4.1	Wave Propagation Analysis	14
		5.4.2	Liquefaction Analysis	15
	5.5	Slope	Stability of Abutment Fills	25
		5.5.1	Soil Property Estimation	25
		5.5.2	Groundwater Elevation Selection	27
		5.5.3	Design Horizontal and Vertical Earthquake Accelerations	28
		5.5.4	Flood Hazard Analysis	29
6.0	PRO	CEDUI	RES FOR SEISMIC CONDITION ASSESSMENT OF BRIDGES	
	AND	ABUT	MENTS	30
	6.1	Glob	al Performance Goals	30
		6.1.1	American Association of State Highway and Transportation	
		6.1.2	Bridges Along US 60	30
	6.2	Engir	neering Performance Criteria	31
		6.2.1	Performance Assessment	31
		6.2.2	Seismic Demand	32
		6.2.3	Seismic Capacity	33
		6.2.4	Acceptable Damage	33
	6.3	Analy	ysis Procedures	33
		6.3.1		33
			6.3.1.1 Design Ground Motions	33
			6.3.1.2 Analysis Procedure	34
		6.3.2	Computer Modeling of Abutments	34
7.0	REC	GIONAI	L GEOLOGY AND GEOTECHNICAL DATA	38
	7.1		onal Geology	38
	7.2	Sumr	mary of Field and Laboratory Data	40
8.0			OF SITE SPECIFIC STUDIES	41
	8.1		ancis River Bridge Site	41
		8.1.1	Site Geology	41
			Selected Base Rock Motion	41
		8.1.3	Seismic Response of Soil	41
			8.1.3.1 Horizontal Seismic Response of Soil	42
			8.1.3.2 Resulting Ground Motion Time Histories	43
			8.1.3.3 Vertical Seismic Response of Soil	50
		8.1.4	Liquefaction Potential Analysis	50
			8.1.4.1 Cyclic Stress Ratio (CSR), Cyclic Resistant Ratio (CRR) and	
			Factor of Safety (FOS)	65
		8.1.5	Slope Stability of Abutment Fills	65
		8.1.6	Flood Hazard Analysis Results	66
		8.1.7	Structure Response of Bridges and Abutments	72
			8.1.7.1 New St. Francis River Bridge	72
			8.1.7.1.1 Bridge Description	72
			8.1.7.1.2 Bridge Model and Analysis	72

	8.1.7.1.3 Details	ailed Description of Bridge Evaluation	76
	8.1	.7.1.3.1 Load Combination Rule	77
	8.1	.7.1.3.2 Minimum Support Length and C/D Rat	io
		for Bearing	77
	8.1	.7.1.3.3 C/D Ratios for Shear Force at Bearings	77
	8.1	.7.1.3.4 C/D Ratios for Columns/Piers	78
	8.1	.7.1.3.5 C/D Ratios for Hooked Anchorage in	
		Columns	84
	8.1	.7.1.3.6 C/D Ratios for Splices in Longitudinal	
		Reinforcement	84
	8.1	.7.1.3.7 C/D Ratio for Transverse Confinement	85
	8.1	.7.1.3.8 C/D Ratio for Column Shear	85
	8.1	.7.1.3.9 C/D Ratio for Diaphragm and Cross-	
		Frame Members	87
	8.1	.7.1.3.10 Ratio for Abutment Displacements	88
	8.1.7.1.4	Summary of Problem Areas	89
	8.1.7.1.5	Time History Analysis vs. Response Spectrum	
		Analysis	90
	8.1.7.1.6	Comparison of AASHTO Response Spectrum	
		vs. Site-Specific Response Spectrum	96
	8.1.7.2 Old St. F.	rancis River Bridge	97
	8.1.7.2.1	Bridge Description	97
	8.1.7.2.2	Bridge Model and Analysis	98
	8.1.7.2.3	Bridge Evaluation	99
	8.1	.7.2.3.1 Load Combination Rule	102
	8.1	.7.2.3.2 Minimum Support Length and C/D Rati	0
		for Bearing	102
		.7.2.3.3 C/D Ratios for Shear Force at Bearing	
			103
	8.1	.7.2.3.5 C/D Ratios for Reinforcement	
		Anchorage in Columns	104
	8.1	.7.2.3.6 C/D Ratios for Splices in Longitudinal	
			104
		.7.2.3.7 C/D Ratio for Transverse Confinement	
			105
	8.1	.7.2.3.9 C/D Ratio for Diaphragm and Cross-	
			105
	8.1	.7.2.3.10 C/D Ratio for Abutment	
		1	.05
	8.1.7.2.4	,	.06
	8.1.7.2.5	Time History Analysis vs. Response Spectrum	
		3	107
	8.1.7.2.6	1	109
	8.1	.7.2.6.1 Calculated Time Dependent	
		1	109
8.2	Wahite Ditch Bridge Site		113

8.2.1	Site Geology			113	
	Selected Base Ro	ck M	otion	114	
8.2.3	Seismic Respons	e of S	Soil	114	
			smic Response of Soil	117	
			nd Motion Time Histories	123	
			c Response of Soil	124	
8.2.4	Liquefaction Pote		±	140	
	•		atio (CSR), Cyclic Resistant Ratio (CRR) and		
	_		Safety	140	
8.2.5	Slope Stability of			140	
	Flood Hazard Ana			142	
		•	Wahite Ditch Bridges and Abutments	142	
	8.2.7.1 New Wah		_	142	
	8.2.7.1.1	Brid	ge Description	142	
	8.2.7.1.2	Brid	ge Model and Analysis	144	
	8.2.7.1.3	Desc	cription of Bridge Evaluation	148	
		8.2.7	7.1.3.1 Load Combination Rule	148	
		8.2.7	7.1.3.2 Minimum Support Length and C/D		
			Ratio for Bearing	148	
		8.2.7	7.1.3.3 C/D Ratios for Shear Force at Bearings	148	
			7.1.3.4 C/D Ratios for Columns/Piers	149	
		8.2.7	7.1.3.5 C/D Ratios for Reinforcement		
			Anchorage in Columns	150	
		8.2.7	7.1.3.6 C/D Ratios for Splices in Longitudinal		
			Reinforcement	150	
			7.1.3.7 C/D Ratio for Transverse Confinement	150	
8.2.7.1.3.8 C/D Ratio for Column Shear					
8.2.7.1.3.9 C/D Ratio for Diaphragm Members 1					
			7.1.3.10 C/D Ratio for Abutment Displacement		
	8.2.7		5	150	
	8.2.7	.1.5	Comparison of AASHTO Response Spectrum		
	0.0 = 0.011 xx 1:	. D.	vs. Site-Specific Response Spectrum	151	
	8.2.7.2 Old Wahi			153	
	8.2.7.2.1		ge Description	153	
	8.2.7.2.2		ge Model and Analysis	154	
	8.2.7.2.3		ge Evaluation .7.2.3.1 Load Combination Rule	158	
				158	
		0.2	.7.2.3.2 Minimum Support Length and C/D	158	
		Q 2	Ratio for Bearing 7.2.3.3 C/D Ratios for Shear Force at Bearings		
			.7.2.3.4 C/D Ratios for Columns/Piers	158	
			.7.2.3.4 C/D Ratios for Columns/Fiels .7.2.3.5 C/D Ratios for Reinforcement	130	
		0.2	Anchorage in Columns	159	
		Q 1	.7.2.3.6 C/D Ratios for Splices in Longitudinal	139	
		0.2	Reinforcement	159	
		8 2	7 2 3 7 C/D Ratio for Transverse Confinement		

				8.2.7.2.3.8 C/D Ratio for Column Shear	160
				8.2.7.2.3.9 C/D Ratio for Diaphragm Members	160
				8.2.7.2.3.10 C/D Ratio for Abutment	
				Displacements	160
			8.2.7.2.4	Summary of Problem Areas	160
			8.2.7.2.5	Time History Analysis vs. Response Spectrum	
			0,2,,,,2,0	Analysis	161
			8.2.7.2.6	Structural Response of Abutments	165
			0.2.7.2.0	8.2.7.2.6.1 Calculated Time Dependent	100
				Displacement of Abutment	165
9.0	CON	CLUSIC	NS	Displacement of Mouthlent	169
7.0	9.1	Summa			169
	9.2		ehnical GIS Databa	000	169
	9.3				169
	9.3	-	•	Hazards Assessments	170
		9.3.1	Francis River Brid	· ·	170
			9.3.1.1 Liquefacti		
			9.3.1.2 Slope State	· ·	170
			9.3.1.3 Flood Haz		170
				Response of St. Francis River Bridges	170
				New St. Francis River Bridge	170
			9.3.1.4.2	Old St. Francis River Bridge	171
			9.3.1.4.3	Old St. Francis River Bridge Abutment	171
		9.3.2	Wahite Ditch Brid	-	171
			9.3.2.1 Liquefacti		171
			9.3.2.2 Slope State	ž	171
			9.3.2.3 Flood Haz		171
			9.3.2.4 Structural	Stability of Wahite Ditch Bridges	172
			9.3.2.4.1	New Wahite Ditch Bridge	172
			9.3.2.4.2	Old Wahite Ditch Bridge	172
			9.3.2.4.3	Old St. Francis River Bridge Abutment	172
10.0	REC	OMMEN	NDATIONS		172
	10.1	Protoco	ol		172
		10.1.1	Determination of	Site-Specific Strong Rock Motion	173
		10.1.2	Determination of	Liquefaction Potential	173
		10.1.3	Determination of	Slope Stability	174
		10.1.4	Determination of	Potential for Flooding in Response to Strong	
			Ground Mot	ion	174
		10.1.5	Evaluation of Flo	oding Potential	175
		10.1.6	Determination of	Structural Stability	175
				on of Abutment Stability	175
				on of Stability of Integrated Bridge Abutments	175
				on of Stability of Structural Members	175
	10.2	Furthe	er Work	•	176
				Retrofit of Critical Structures along Designated	. •
			-	Access Routes	176

10.2.2 Proposed Study: Site Specific Earthquake Assessments along MO 100	176
10.2.3 Proposed Study: Regional Liquefaction Hazard Analysis	177
10.2.4 Proposed Study: Geo-Referencing of Boring Locations	178
10.2.5 Proposed Study: Regional Prioritization for Future Earthquake	
Hazards Assessments	178
10.2.6 Proposed Study: Laboratory Testing of Truss-Type Diaphragms or	
Cross Frames and Effective Retrofitting Techniques	178
10.2.7 Proposed Study: Integration of LOGMAIN Surficial Materials	
Information	178
10.2.8 Proposed Study: Long Term Strategic Plan	178
11.0 BIBLIOGRAPHY	179
12.0 LIST OF SYMBOLS	183

LIST OF ILLUSTRATIONS

riguie	ŀ	ì	g	u	r	e
--------	---	---	---	---	---	---

	P	age
2.1	Study Site Locations	2
4.1	System Design: Top-Down vs. Bottom-Up	4
4.2	Organization of Missouri Department of Transportation Subsurface Data	5
4.3 5.1	Example of an Object Oriented Geotechnical Database Model (Luna and Frost, 1995) Seismicity in The 1974 - 1995 Time Period in The Vicinity of The St. Francis River	7
	Bridge Site (SF) and the Wahite Ditch Site (WD).(Herrmann, (2000))	13
5.2	The Selected Base Rock Motion for the St. Francis River Bridge Site	
	5.2a PE 10% in 50 Years, Magnitude 6.2	16
	5.2b PE 10% in 50 Years, Magnitude 7.2	17
	5.2c PE 2% in 50 Years, Magnitude 6.4	18
	5.2d PE 2% in 50 Years, Magnitude 8.0	19
5.3	The Selected Base Rock Motion for The Wahite Ditch Bridge Site	
	5.3a PE 10% in 50 Years, Magnitude 6.4	20
	5.3b PE 10%in 50 Years, Magnitude 7.0	21
	5.3c PE 2% in 50 Years, Magnitude 7.8	22
	5.3d PE 2% in 50 Years, Magnitude 8.0	23
5.4	Simplified Base Curve Recommended for Calculation of CRR From SPT (N ₁) ₆₀ Data Alo	ng
	With Empirical Liquefaction Data for M=7.5 (From Seed et. al., 1971, Modified by You	1
	and Idriss, 1997)	26
5.5	St. Francis River Bridge Site Topography, Cross-Sections and Boring Locations	27
5.6	Wahite Ditch Bridge Site Topography, Cross Sections and Boring Locations	28
6.1	The Typical Highway Bridge Abutment Supported on Piles	36
6.2	Translation and Rotation Movement of Bridge Abutment Forces Acting on the Bridge	
	Abutment	36
6.3	Forces Acting on the Bridge Abutment	37
	Extent of Mississippi Embayment	39
	Cross-Section of Regional Geology	40
8.1	6 63	42
	Cross-Section of St. Francis River Bridge Site Geology	43
	Soil Profile St. Francis River Bridge Site Boring B-1	44
	Acceleration Time Histories for St. Francis River Bridge Site	
	8.4a PE 10% in 50 Years Magnitude = 6.2	46
	8.4b PE 10% in 50 Years Magnitude = 7.2	47
	8.4c PE 2% in 50 Years, Magnitude = 6.4	48
	8.4d PE 2% in 50 Years, Magnitude = 8.0	49
8.5	Peak Ground Acceleration vs. Depth for PE 10% in 50 Years Magnitudes 6.2 and 7.2 St.	17
3.0	Francis River Bridge Site	51
8.6	Peak Ground Acceleration vs. Depth for PE 2% in 50 Years Magnitudes 6.4 and 8.0 St.	<i>J</i> 1
J.U	Francis River Bridge Site	52
8.7		J <u></u>

	8.7a PE 10% in 50 years, Magnitude = 6.2	53
	8.7b PE 10% in 50 years, Magnitude = 7.2	54
	8.7c PE 2% in 50 years, Magnitude =,6.4	55
	8.7d PE 2% in 50 years, Magnitude = 8.0	56
8.8	Ground Acceleration a the St. Francis River Bridge Abutment	
	8.8a. PE 10% in 50 years, Magnitude = 6.2	57
	8.8b PE 10% in 50 years, Magnitude = 7.2	58
	8.8c PE 2% in 50 years, Magnitude = 6.4	59
	8.8d PE 2% in 50 years, Magnitude = 8.0	60
8.9	Ground Acceleration at the St. Francis River Bridge Pier	
	8.9a PE 10% in 50 years, Magnitude = 6.2	61
	8.9b PE 10% in 50 years, Magnitude = 7.2	62
	8.9c PE 2% in 50 years, Magnitude = 6.4	63
	8.9d PE 2% in 50 years, Magnitude = 8.0	64
8.10	Soil Profile, CSR, CRR and Factor of Safety Against Liquefaction at the St. Francis Ri	ver
	Bridge Site for PE 10% in 50 years and M=6.2	67
8.11	Example Slope Stability Results for St. Francis River Bridge Site	68
8.12	Estimated Flooding Zone Due to Wappapello Dam Failure	71
8.13	Region of Potential Flooding	71
8.14	Bridge General Elevation (New St. Francis River Bridge)	73
8.15	Mode 1, Period 0.2519 Seconds (New St. Francis River Bridge)	74
8.16	Mode 2, Period 0.2295 Seconds (New St. Francis River Bridge)	74
8.17	Mode 3, Period 0.1421 Seconds (New St. Francis River Bridge)	75
8.18	Mode 4, Period 0.0901 Seconds (New St. Francis River Bridge)	75
8.19	Mode 5, Period 0.0896 Seconds (New St. Francis River Bridge)	76
8.20	Shear Force Calculations	79
8.21	Calculations of Axial Loads and Column Shears	83
8.22	Calculations for Hooked Anchorage in Columns	85
8.23	Calculations for Splices in Longitudinal Reinforcement	86
8.24		86
8.25	Calculations for Column Shear	88
8.26	1 &	89
8.27	Calculations for Abutment Displacements	90
8.28	Comparison of AASHTO Response Spectrum & Site Specific Response Spectrum	96
8.29	Bridge General Elevation (Old St. Francis River Bridge)	98
8.30	Mode 1, Period 1.3173 Seconds (Old St. Francis River Bridge)	100
8.31	Mode 2, Period 0.4773 Seconds (Old St. Francis River Bridge)	100
8.32	Mode 3, Period 0.3673 Seconds (Old St. Francis River Bridge)	101
8.33	Mode 4, Period 0.2065 Seconds (Old St. Francis River Bridge)	101
8.34	Mode 5, Period 0.1501 Seconds (Old St. Francis River Bridge)	102
8.35	Old St. Francis River Bridge Plans	113
8.36	C, C	117
0.25	Francis River Bridge Abutment PE 10% in 50 Years, Magnitudes 6.2 and 7.2	115
8.37	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old St.	117
0 20	Francis River Bridge Abutment PE 2% in 50 Years, Magnitudes 6.4 and 8.0	116
8.38	Cross-Section of Wahite Ditch Bridge Site Geology	117

8.39	Accelei	ration Time Histories for the Wahite Ditch Bridge Site	
	8.39a	PE 2% in 50 Years Magnitude = 6.4	119
	8.39b.	PE 10% in 50 Years Magnitude = 7.0	120
	8.39c	PE 2% in 50 Years, Magnitude = 7.8	121
	8.39d	PE 2% in 50 Years, Magnitude = 8.0	122
8.40	Wahite	Ditch Bridge Site Topography, Cross-Section and Boring Locations	123
8.41	Soil Pr	ofile B-1 Wahite Ditch Bridge Site	125
8.42	Peak C	Fround Acceleration vs. Depth for PE 10% in 50 Years Magnitudes 6.4 and 7.0	
	Wahite	Ditch Bridge Site	126
8.43	Peak G	round Acceleration vs. Depth for PE 2% in 50 Years Magnitudes 7.8 and 8.0	
	Wahite	Ditch Bridge Site	127
8.44	Surfa	ce Ground Acceleration at the Wahite Ditch Bridge Site	
	8.44a	PE 10% in 50 years Magnitude = 6.4	128
	8.44b	PE 10% in 50 years Magnitude = 7.0	129
	8.44c	PE 2% in 50 years Magnitude = 7.8	130
	8.4ed	PE 2% in 50 years Magnitude = 8.0	131
8.45		Acceleration at the Abutment Wahite Ditch Bridge	
	8.45a	PE 10% in 50 years Magnitude = 6.4	132
	8.45b	PE 10% in 50 years Magnitude = 7.0	133
	8.45c	PE 2% in 50 years Magnitude = 7.8	134
	8.45d	PE 2% in 50 years Magnitude = 8.0	135
8.46		Acceleration at the Wahite Ditch Bridge Pier	
	8.46a	PE 10% in 50 years Magnitude = 6.4	136
	8.46b	PE 10% in 50 years Magnitude = 7.0	137
	8.46c	PE 2% in 50 years Magnitude = 7.8	138
	8.46d	PE 2% in 50 years Magnitude = 8.0	139
8.47		offile, CSR, CRR and Factor of Safety Against Liquefaction at the Wahite Ditch	
0.40	_	Site for M=6.4	141
		e Slope Stability Results for Wahite Ditch Bridge Site	144
	_	General Elevation (New Wahite Ditch Bridge)	145
		Period 0.2686 Seconds (New Wahite Ditch Bridge)	146
		Period 0.2558 Seconds (New Wahite Ditch Bridge)	146
		Period 0.0915 Seconds (New Wahite Ditch Bridge)	147
		Period 0.0854 Seconds (New Wahite Ditch Bridge)	147
		Period 0.0729 Seconds (New Wahite Ditch Bridge)	148
	_	General Elevation (Old Wahite Ditch Bridge)	154
		Period 0.5641 Seconds (Old Wahite Ditch Bridge)	155
		Period 0.3518 Seconds (Old Wahite Ditch Bridge)	156
		Period 0.1809 Seconds (Old Wahite Ditch Bridge)	156
		Period 0.1229 Seconds (Old Wahite Ditch Bridge)	157 157
		Period 0.1025 Seconds (Old Wahite Ditch Bridge)	
	_	General Elevation (Old Wahite Ditch Bridge) Cross-Section of Old Wahite Ditch Bridge Abutment	162
0.02	8.62a	Plan of Old Wahite Ditch Bridge Abutment	166
		Cross Section of Old Wahite Ditch Bridge Abutment	166
	0.04D (Abos section of Old wante Ditch Diage Addition	100

8.63	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old	
	Wahite Ditch Bridge Abutment PE 10% in 50 Years, Magnitudes 6.4 and 7.0	167
8.64	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old	
	Wahite Ditch Bridge Abutment PE 2% in 50 Years, Magnitudes 7.8 and 8.0	168

LIST OF TABLES

Tal	ble	Page
	Example of Data Structure Input to Database	8
5.1	Peak Ground Acceleration (Herrmann, 2000) (Source; USGS 1996 Seismic Hazard	1.2
<i>5</i> 2	Maps) Magnitude and Distances for Selected Forth quality (Harryonn, 2000)	13
5.4	Magnitude and Distances for Selected Earthquakes, (Herrmann, 2000)	14
	5.2a St. Francis River Bridge Site	14
5 2	5.2b Wahite Ditch Bridge Site Design Horizontal and Vertical Earthquake Accelerations	14
3.3	5.3a St. Francis River Bridge Site	29
	5.3b Wahite Ditch Bridge Site	29
Q 1	Detail of Synthetic Ground Motion at the Rock Base of St. Francis River Bridge Site W	
0.1	Corresponding Maximum Peak Horizontal Ground Acceleration	V 1 L 11
	8.1a PE 10% in 50 Years	45
	8.1b PE 2 % in 50 Years	45
Q 2	Detail of Peak Ground Motion Used at the St. Francis River Bridge Site Rock Base, Gr	
0.2	Surface, Bridge Abutment and Pier	Ouna
	8.2a PE 10% in 50 Years	65
	8.2b PE 2 % in 50 Years	65
8.3	The Different Zones of Soil Liquefaction for Different Factors of Safety	66
8.4	Soil Properties used for the Slope Stability Analysis, St. Francis River Bridge Site	66
8.5	Slope Stability Results for the St. Francis River Bridge Site	69
8.6	Natural Periods and Their Corresponding Vibration Modes (New St. Francis	0)
•••	River Bridge)	73
8.7	Elastic Moments Due to Transverse Acceleration	81
8.8	Elastic Moments Due to Longitudinal Acceleration	81
8.9	Elastic Moments Due to Vertical Acceleration	82
8.10		82
8.11	•	84
8.12	•	91
8.13	•	92
8.14	j i	
	Column 2 New St. Francis River Bridge	93
8.15	5 Comparison of Moments for Time History and Response Spectrum Analysis for	
	Column 5 New St. Francis River Bridge	94
8.16	6 Comparison of Displacements for Time History and Response Spectrum Analysis for	
	Maximum Abutment Displacement. New St. Francis River Bridge	95
8.17	7 Comparison of AASHTO Response Spectrum vs. Site Specific Response	
	Spectrum (New St. Francis)	97
8.18	Natural Periods and their Corresponding Vibration Modes (Old St. Francis	
	River Bridge)	99
8.19	Summary C/D for Various Components of the Old St. Francis River Bridge for all	
	Earthquakes	108

8.20	Comparison of Moments for Time History and Response Spectrum Analysis for	
	Column 2 Old St. Francis River Bridge	110
8.21	Comparison of Moments for Time History and Response Spectrum Analysis for	
	Column 5 Old St. Francis River Bridge	111
8.22	Comparison of Displacements for Time History and Response Spectrum Analysis for	
	Maximum Abutment Displacement. Old St. Francis River Bridge	112
8.23	Displacement at Top of Old St. Francis Bridge Abutment	114
	Detail of Peak Ground Motion at Wahite Ditch Bridge Site, Rock Base, Soil Surface,	
	Bridge Abutment and Pier	
	8.24a PE 10% in 50 Years	118
	8.24b PE 2 % in 50 Years	118
8.25	Detail of Peak Ground Motion Used at the Wahite Ditch Bridge Site Rock Base,	
	Ground Surface, Bridge Abutment and Pier	
	8.25a. PE 10% in 50 years	124
	8.25b PE 2% in 50 years	124
8.26	The Different Zones of Soil Liquefaction for Different Factors of Safety	142
8.27	Soil Properties Used for the Slope Stability Analysis, Wahite Ditch Bridge Site	
	Slope Stability Analysis	142
8.28	Slope Stability Results, Wahite Ditch Bridge Site	143
8.29	Natural Periods and Their Corresponding Vibration Modes (New Wahite	
	Ditch Bridge)	145
8.30	Summary of all Earthquakes for New Wahite Ditch Bridge	152
8.31	Comparison of AASHTO Response Spectrum vs. Site Specific Response	
	Spectrum (New Wahite)	153
8.32	2 Natural Periods and their Corresponding Vibration Modes (Old Wahite Ditch Bridge)	155
8.33	Summary of all Earthquakes for Old Wahite Ditch Bridge	163
8.34	Comparison of Column Moments for Old Wahite Ditch Bridge	164
8.35	Displacement at Top of Old Wahite Ditch Bridge Abutment	166

D.1Time Series for Study Sites A184 D.2 Magnitude and Distance for Design Earthquakes A185 D3 St. Francis River 10 % Probability of Exceedance in 50 Years A186 D.4 St. Francis River 2 % Probability of Exceedance in 50 Years A187 D.5 Wahite Ditch 10% Probability of Exceedance in 50 Years A188 D.6 Wahite Ditch 2% Probability of Exceedance in 50 Years A189

APPENDICES

Α.	FIELD DATA	A 1
	A.1 Symbols Used on Boring Information	A 1
	A.2 St. Francis River Bridge Site Test Pits	A3
	A.3 St. Francis River Bridge Site Boring Logs	A6
	A.4 St. Francis River Bridge Site Cone Penetrometer Logs	A13
	A.5 Wahite Ditch Bridge Site Test Pits	A19
	A.6 Wahite Ditch Bridge Site Boring Logs	A24
	A.7 Wahite Ditch Bridge Site Cone Penetrometer Logs	A30
В.	LABORATORY DATA	A35
	B.1 Cyclic Stress Test Results	A35
	B.2 St. Francis River Bridge Site Laboratory Results	A37
	B.3 Wahite Ditch Bridge Site Laboratory Results	A43
C.	SOFTWARE DESCRIPTION	A48
	C.1 SHAKE91 and SHAKEDIT	A48
	C.1.1 SHAKE91	A48
	C.2.2 SHAKEDIT	A48
	C.2 Modified <i>DDRW2</i> Program	A48
	C.3 PCSTABLE5	A49
	C.4 SAP2000	49
D.	DETAILS OF SYNTHETIC GROUND MOTION	A51
	D.1 Task	A51
	D.2 Overview of problem	A51
	D.3 Defining earthquakes	A51
	D.4 Discussion	A56
E.	DATABASE FOR EARTHQUAKE ANALYSIS	A89
F.	BRIDGE ABUTMENT AND PIER SUPPORTED ON A PILE GROUP	A90
	F.1 Stiffness and Damping Factors of Single Pile	A90
	F.1.1 Vertical Stiffness (k _z) and Damping Factors (c _z)	A90
	F.1.2 Torsional Stiffness (k_{ψ}) and Damping Factors (c_{ψ})	A90
	F.1.3 Sliding and Rocking Stiffness and Damping Factors	A93
	F.2 Group Interaction Factor	A94
	F.3 Group Stiffness and Damping Factors	A98
	F.3.1 Vertical Group Stiffness (k _z ^g) and Damping Factors (c _z ^g)	A98
	F.3.2 Torsional Group Stiffness (k_{ψ}^{g}) and Damping Factors (c_{ψ}^{g}) F.3.3 Sliding and Rocking and Cross Coupled group Stiffness and	A98
	Damping Factors	A99
	F.4 Strain-Displacement Relationships	A100
	F.5 Solution Technique for Displacement Dependent k"s and c's	A101
	F.6 Equations of Motion	A104

G. LIQUEFACTION ANALYSIS	A161
H MOMENT-ROTATION CURVE OF PILE FOUNDATIONS	A185