Final Report

RDT REDT01-009

Earthquake Hazard Assessment Along Designated Emergency Vehicle Priority Access Routes

Neil Anderson, Geology and Geophysics, UMR Hal Baker, Geology and Land Survey, MoDNR Genda Chen, Civil Engineering, UMR Tom Hertell, Geology and Land Survey, MoDNR Dave Hoffman, Geology and Land Survey, MoDNR Ronaldo Luna, Civil Engineering, UMR Yulman Munaf, Civil Engineering, UMR Shamsher Prakash, Civil Engineering, UMR Paul Santi, Geological Engineering, UMR Richard Stephenson, Civil Engineering, UMR

Prepared For:

Missouri Department of Transportation Geotechnical Group Research, Development and Technology Jefferson City, Missouri November 2001

The opinions, findings, and conclusions expressed in this publication are those of the principal investigators and the Missouri Department of Transportation, Research, Development and Technology.

They are not necessarily those of the U.S. Department of Transportation, Federal Highways Administration. This report does not constitute a standard or regulation.

EXECUTIVE SUMMARY

Southeast Missouri experiences relatively small magnitude earthquakes on a regular basis, and is the site of several of the largest earthquakes to strike North America in recorded history (1811 - 1812). Experts agree that high consequence events are anticipated in the Midwest New Madrid Seismic Zone. Experts also agree that if a very high magnitude earthquake struck southeastern Missouri today the damage to critical lifeline infrastructure would be catastrophic.

Because of the compelling need to reopen vehicular access routes into Sikeston, Cape Girardeau and St. Louis following a devastating earthquake, the Missouri Department of Transportation initiated a study of those portions of US 60 and MO 100 that have been officially designated as emergency vehicle priority access routes.

The goals of this study were twofold. Goal one was to establish a geotechnical database for earthquake design for areas in proximity to designated portions of US 60 and Missouri 100 (includes counties of Butler, Stoddard, New Madrid, Franklin and St. Louis). Goal two was to conduct detailed earthquake assessments at two sites along designated emergency vehicle priority access US 60.

Both goals of the research have been met. Databases have been established for current subsurface and geotechnical data for the US 60 corridor in Butler, Stoddard and New Madrid Counties and for the Missouri 100 corridor in Franklin and St. Louis Counties. These databases serve as the beginning of a larger regional and statewide database for future development and usage by the Missouri Department of Transportation. A discussion of the databases and documentation for their use is contained in *User Instructions for Data Entry and Editing of The Database of Borehole and Geophysical Data for Missouri Highway Structures*.

Detailed earthquake site assessments were conducted for two critical US 60 roadway bridge sites. Both the new and old bridges at the Wahite Ditch and the St. Francis River crossings were analyzed. Liquefaction potential, slope stability, flooding potential, abutment stability, and structure stability analysis were performed at both sites for selected critical synthetic bedrock ground motions based on New Madrid source zone earthquakes with 2% and 10% probabilities of exceedance in fifty years.

The site assessment studies indicate that both the Old Wahite Ditch Bridge and the Old St. Francis River Bridge could be rendered unusable by strong ground motion with a 2% probability of exceedance in the next fifty years. The New St. Francis River Bridge would likely suffer severe damage in the cross frames of the superstructure for a 2% probability of exceedance in the next fifty years earthquake. Studies indicate that the approach structures of all the study bridges would fail as a result of slope instability and liquefaction. Problems could be exacerbated by the localized flooding as a result of levee failure and/or damage to the Wappapello Dam.

ACKNOWLEDGEMENTS

A work of this magnitude requires the assistance of a large number of people. In particular, the principal investigators would like to thank the professionals of the Missouri Department of Transportation for their assistance and encouragement. These people include Thomas Fennessey, Michael Fritz, Dan Camden and Lonnie Blasingame.

Graduate students at the University of Missouri-Rolla carried much of the work on this project out. The dedication of the following graduate students is gratefully acknowledged: Eric Neuner, Kenneth Zur, Huimin Mu and Pamela Thebeau.

TABLE OF CONTENTS

SEC	ΓΙΟΝ		Page
EXE	CUTIV	E SUMMARY	ii
ACK	NOWI	LEDGEMENTS	iv
LIST	OF II	LUSTRATIONS	xii
LIST	OF T	ABLES	vii
1.0	INTI	RODUCTION	1
2.0	STA	TEMENT OF PROBLEM/SCOPE OF WORK	2
3.0	OBJ	ECTIVES	2
	3.1 3.2	Geotechnical Databases Site Specific Earthquake Hazards Assessments	2 3
4.0		 SOURI DEPARTMENT OF TRANSPORTATION DTECHNICAL DATABASE Design 4.1.1 Design Approach 4.1.2 A Geotechnical Generic Example 4.1.3 Analysis and Data Structure Implementation 	3 3 4 5 6 8
5.0	5.1	Link to Spatial Database (GIS) CHARACTERIZATION PROCEDURES Field Investigations 5.1.1 Drilling and Sampling 5.1.2 Test Pits 5.1.3 Cone Penetrometer Testing 5.1.4 Surface Mapping 5.1.5 Interviews with Local Personnel	8 8 9 9 9 9 10
	5.2	 Laboratory Investigations 5.2.1 Missouri Department of Transportation Laboratory Soil Testing 5.2.2 University of Missouri-Rolla Laboratory Soil Testing 5.2.2.1 Consolidated Undrained (CU) Triaxial Tests 5.2.2.2 Cyclic Triaxial Tests 	10 10 10 11 11
	5.3	 Base Rock Motion Determination 5.3.1 Current Peak Ground Acceleration 5.3.2 Magnitudes and Distances for the Recommended Acceleration 7 5.3.3 Time Histories 	11 11 Values 12 12

	5.4	Seism	nic Response of Soil	14
		5.4.1	Wave Propagation Analysis	14
		5.4.2	Liquefaction Analysis	15
	5.5	Slope	Stability of Abutment Fills	25
		5.5.1	Soil Property Estimation	25
		5.5.2	Groundwater Elevation Selection	27
		5.5.3	Design Horizontal and Vertical Earthquake Accelerations	28
		5.5.4	Flood Hazard Analysis	29
6.0			RES FOR SEISMIC CONDITION ASSESSMENT OF BRIDGES	
		ABUT		30
	6.1		al Performance Goals	30
		6.1.1	American Association of State Highway and Transportation	
			Bridges Along US 60	30
	6.2	•	neering Performance Criteria	31
			Performance Assessment	31
			Seismic Demand	32
		6.2.3	1 5	33
		6.2.4	Acceptable Damage	33
	6.3	•	visis Procedures	33
		6.3.1	Computer Modeling of Bridges	33
			6.3.1.1 Design Ground Motions	33
			6.3.1.2 Analysis Procedure	34
		6.3.2	Computer Modeling of Abutments	34
7.0			GEOLOGY AND GEOTECHNICAL DATA	38
	7.1	•	onal Geology	38
	7.2	Sumn	nary of Field and Laboratory Data	40
8.0			OF SITE SPECIFIC STUDIES	41
	8.1		ancis River Bridge Site	41
		8.1.1	Site Geology	41
			Selected Base Rock Motion	41
		8.1.3	Seismic Response of Soil	41
			8.1.3.1 Horizontal Seismic Response of Soil	42
			8.1.3.2 Resulting Ground Motion Time Histories	43
		014	8.1.3.3 Vertical Seismic Response of Soil	50
		8.1.4	Liquefaction Potential Analysis	50
			8.1.4.1 Cyclic Stress Ratio (CSR), Cyclic Resistant Ratio (CRR) and	65
		015	Factor of Safety (FOS)	65 65
		8.1.5	Slope Stability of Abutment Fills	65
		8.1.6	Flood Hazard Analysis Results	66 72
		8.1.7	Structure Response of Bridges and Abutments	72
			8.1.7.1 New St. Francis River Bridge	72
			8.1.7.1.1 Bridge Description 8.1.7.1.2 Bridge Model and Applysic	72
			8.1.7.1.2 Bridge Model and Analysis	72

8.1.7.1.3 Det	ailed Description of Bridge Evaluation	76
8.1	.7.1.3.1 Load Combination Rule	77
8.1	.7.1.3.2 Minimum Support Length and C/D Ra	tio
	for Bearing	77
8.	1.7.1.3.3 C/D Ratios for Shear Force at Bearings	3 77
8.1	.7.1.3.4 C/D Ratios for Columns/Piers	78
8.1	.7.1.3.5 C/D Ratios for Hooked Anchorage in	
	Columns	84
8.1	.7.1.3.6 C/D Ratios for Splices in Longitudinal	
	Reinforcement	84
8.1	1.7.1.3.7 C/D Ratio for Transverse Confinement	85
8.1	.7.1.3.8 C/D Ratio for Column Shear	85
8.1	.7.1.3.9 C/D Ratio for Diaphragm and Cross-	
	Frame Members	87
8.1	.7.1.3.10 Ratio for Abutment Displacements	88
8.1.7.1.4	Summary of Problem Areas	89
8.1.7.1.5	Time History Analysis vs. Response Spectrum	
	Analysis	90
8.1.7.1.6	Comparison of AASHTO Response Spectrum	
	vs. Site-Specific Response Spectrum	96
8.1.7.2 Old St. F	rancis River Bridge	97
	Bridge Description	97
	Bridge Model and Analysis	98
8.1.7.2.3	e	99
	.7.2.3.1 Load Combination Rule	102
8.1	1.7.2.3.2 Minimum Support Length and C/D Rat	
	for Bearing	102
	e	103
	.7.2.3.4 C/D Ratios for Columns/Piers	103
8.1	.7.2.3.5 C/D Ratios for Reinforcement	
	Anchorage in Columns	104
8.1	.7.2.3.6 C/D Ratios for Splices in Longitudinal	
	Reinforcement	104
	1.7.2.3.7 C/D Ratio for Transverse Confinement	
	.7.2.3.8 C/D Ratio for Column Shear	105
8.1	.7.2.3.9 C/D Ratio for Diaphragm and Cross-	105
0.1	Frame Members	105
8.1	.7.2.3.10 C/D Ratio for Abutment	105
91724	1	105
8.1.7.2.4	5	106
8.1.7.2.5	Time History Analysis vs. Response Spectrum	107
9172(Analysis Structured December of Alectroparts	107
8.1.7.2.6	Structural Response of Abutments	109
8.1	1.7.2.6.1 Calculated Time Dependent	100
Wahita Ditah Bridge Site	Displacements of Abutment	109
Wahite Ditch Bridge Site		113

iii

8.2

8.2.1 Site Geology		113
8.2.2 Selected Base Ro	ock Motion	114
8.2.3 Seismic Response	e of Soil	114
-	l Seismic Response of Soil	117
	Ground Motion Time Histories	123
	eismic Response of Soil	124
8.2.4 Liquefaction Pote	1	140
-	ress Ratio (CSR), Cyclic Resistant Ratio (CRR) and	1.0
•	or of Safety	140
8.2.5 Slope Stability of	5	140
8.2.6 Flood Hazard Ana		140
	se of Wahite Ditch Bridges and Abutments	142
8.2.7.1 New Wah		142
8.2.7.1 New Wah	Bridge Description	142
8.2.7.1.2	Bridge Model and Analysis	142
8.2.7.1.2	Description of Bridge Evaluation	144
0.2.7.1.3	8.2.7.1.3.1 Load Combination Rule	148
		140
	8.2.7.1.3.2 Minimum Support Length and C/D	140
	Ratio for Bearing	148
	8.2.7.1.3.3 C/D Ratios for Shear Force at Bearings	148
	8.2.7.1.3.4 C/D Ratios for Columns/Piers	149
	8.2.7.1.3.5 C/D Ratios for Reinforcement	1.50
	Anchorage in Columns	150
	8.2.7.1.3.6 C/D Ratios for Splices in Longitudinal	1.50
	Reinforcement	150
	8.2.7.1.3.7 C/D Ratio for Transverse Confinement	150
	8.2.7.1.3.8 C/D Ratio for Column Shear	150
	8.2.7.1.3.9 C/D Ratio for Diaphragm Members	150
	8.2.7.1.3.10 C/D Ratio for Abutment Displacement	
8.2.7	5	150
8.2.7	.1.5 Comparison of AASHTO Response Spectrum	
	vs. Site-Specific Response Spectrum	151
8.2.7.2 Old Wahi	-	153
	Bridge Description	153
8.2.7.2.2	Bridge Model and Analysis	154
8.2.7.2.3	Bridge Evaluation	158
	8.2.7.2.3.1 Load Combination Rule	158
	8.2.7.2.3.2 Minimum Support Length and C/D	
	Ratio for Bearing	158
	8.2.7.2.3.3 C/D Ratios for Shear Force at Bearing	s158
	8.2.7.2.3.4 C/D Ratios for Columns/Piers	158
	8.2.7.2.3.5 C/D Ratios for Reinforcement	
	Anchorage in Columns	159
	8.2.7.2.3.6 C/D Ratios for Splices in Longitudinal	
	Reinforcement	159
	8.2.7.2.3.7 C/D Ratio for Transverse Confinemen	t 159

		8.2.7.2.3.8 C/D Ratio for Column Shear	160
		8.2.7.2.3.9 C/D Ratio for Diaphragm Members	160
		8.2.7.2.3.10 C/D Ratio for Abutment	
		Displacements	160
		8.2.7.2.4 Summary of Problem Areas	160
		8.2.7.2.5 Time History Analysis vs. Response Spectrum	100
		Analysis	161
		8.2.7.2.6 Structural Response of Abutments	165
		8.2.7.2.6.1 Calculated Time Dependent	105
		Displacement of Abutment	165
9.0	CON	CLUSIONS	165
9.0	9.1	Summary	169
	9.1 9.2	Geotechnical GIS Databases	169
	9.2 9.3		169
	9.5	Site Specific Earthquake Hazards Assessments	
		9.3.1 Francis River Bridge Site	170
		9.3.1.1 Liquefaction	170
		9.3.1.2 Slope Stability	170
		9.3.1.3 Flood Hazard	170
		9.3.1.4 Structural Response of St. Francis River Bridges	170
		9.3.1.4.1 New St. Francis River Bridge	170
		9.3.1.4.2 Old St. Francis River Bridge	171
		9.3.1.4.3 Old St. Francis River Bridge Abutment	171
		9.3.2 Wahite Ditch Bridge Site	171
		9.3.2.1 Liquefaction	171
		9.3.2.2 Slope Stability	171
		9.3.2.3 Flood Hazard	171
		9.3.2.4 Structural Stability of Wahite Ditch Bridges	172
		9.3.2.4.1 New Wahite Ditch Bridge	172
		9.3.2.4.2 Old Wahite Ditch Bridge	172
		9.3.2.4.3 Old St. Francis River Bridge Abutment	172
10.0	REC	OMMENDATIONS	172
		Protocol	172
		10.1.1 Determination of Site-Specific Strong Rock Motion	173
		10.1.2 Determination of Liquefaction Potential	173
		10.1.3 Determination of Slope Stability	174
		10.1.4 Determination of Potential for Flooding in Response to Strong	
		Ground Motion	174
		10.1.5 Evaluation of Flooding Potential	175
		10.1.6 Determination of Structural Stability	175
		10.1.6.1 Evaluation of Abutment Stability	175
		10.1.6.2 Evaluation of Stability of Integrated Bridge Abutments	175
		10.1.6.3 Evaluation of Stability of Structural Members	175
	10.2	Further Work	176
	1004	10.2.1 Proposed Study: Retrofit of Critical Structures along Designated	170
		Emergency Access Routes	176
		Entergency recess reduces	1/0

10.2.2	Proposed Study: Site Specific Earthquake Assessments along MO 10	0 176
10.2.3	Proposed Study: Regional Liquefaction Hazard Analysis	177
10.2.4	Proposed Study: Geo-Referencing of Boring Locations	178
10.2.5	Proposed Study: Regional Prioritization for Future Earthquake	
	Hazards Assessments	178
10.2.6	Proposed Study: Laboratory Testing of Truss-Type Diaphragms or	
	Cross Frames and Effective Retrofitting Techniques	178
10.2.7	Proposed Study: Integration of LOGMAIN Surficial Materials	
	Information	178
10.2.8	Proposed Study: Long Term Strategic Plan	178
11.0 BIBLIOGRA	РНУ	179
12.0 LIST OF SY	YMBOLS	183

LIST OF ILLUSTRATIONS

Figure

2.1	Study Site Locations	2
4.1	System Design: Top-Down vs. Bottom-Up	4
4.2	Organization of Missouri Department of Transportation Subsurface Data	5
4.3	Example of an Object Oriented Geotechnical Database Model (Luna and Frost, 1995)	7
5.1	Seismicity in The 1974 - 1995 Time Period in The Vicinity of The St. Francis River	10
	Bridge Site (SF) and the Wahite Ditch Site (WD).(Herrmann, (2000))	13
5.2	The Selected Base Rock Motion for the St. Francis River Bridge Site	
	5.2a PE 10% in 50 Years, Magnitude 6.2	16
	5.2b PE 10% in 50 Years, Magnitude 7.2	17
	5.2c PE 2% in 50 Years, Magnitude 6.4	18
	5.2d PE 2% in 50 Years, Magnitude 8.0	19
5.3	The Selected Base Rock Motion for The Wahite Ditch Bridge Site	
	5.3a PE 10% in 50 Years, Magnitude 6.4	20
	5.3b PE 10% in 50 Years, Magnitude 7.0	21
	5.3c PE 2% in 50 Years, Magnitude 7.8	22
	5.3d PE 2% in 50 Years, Magnitude 8.0	23
5.4	Simplified Base Curve Recommended for Calculation of CRR From SPT (N1)60 Data Alor	ng
	With Empirical Liquefaction Data for M=7.5 (From Seed et. al., 1971, Modified by Youd	
	and Idriss, 1997)	26
5.5	St. Francis River Bridge Site Topography, Cross-Sections and Boring Locations	27
5.6	Wahite Ditch Bridge Site Topography, Cross Sections and Boring Locations	28
6.1	The Typical Highway Bridge Abutment Supported on Piles	36
6.2		
	Abutment	36
6.3	Forces Acting on the Bridge Abutment	37
	Extent of Mississippi Embayment	39
		40
		42
		43
	Soil Profile St. Francis River Bridge Site Boring B-1	44
	Acceleration Time Histories for St. Francis River Bridge Site	
0	8.4a PE 10% in 50 Years Magnitude = 6.2	46
	8.4b PE 10% in 50 Years Magnitude = 7.2	47
	8.4c PE 2% in 50 Years, Magnitude = 6.4	48
	8.4d PE 2% in 50 Years, Magnitude = 8.0	49
85	Peak Ground Acceleration vs. Depth for PE 10% in 50 Years Magnitudes 6.2 and 7.2 St.	17
0.0	Francis River Bridge Site	51
86	Peak Ground Acceleration vs. Depth for PE 2% in 50 Years Magnitudes 6.4 and 8.0 St.	51
0.0	Francis River Bridge Site	52
8.7		

	8.7a PE 10% in 50 years, Magnitude = 6.2	53
	8.7b PE 10% in 50 years, Magnitude = 7.2	54
	8.7c PE 2% in 50 years, Magnitude =, 6.4	55
	8.7d PE 2% in 50 years, Magnitude = 8.0	56
8.8	Ground Acceleration a the St. Francis River Bridge Abutment	
	8.8a. PE 10% in 50 years, Magnitude = 6.2	57
	8.8b PE 10% in 50 years, Magnitude = 7.2	58
	8.8c PE 2% in 50 years, Magnitude = 6.4	59
	8.8d PE 2% in 50 years, Magnitude = 8.0	60
8.9	Ground Acceleration at the St. Francis River Bridge Pier	
	8.9a PE 10% in 50 years, Magnitude = 6.2	61
	8.9b PE 10% in 50 years, Magnitude = 7.2	62
	8.9c PE 2% in 50 years, Magnitude = 6.4	63
	8.9d PE 2% in 50 years, Magnitude = 8.0	64
8.10	Soil Profile, CSR, CRR and Factor of Safety Against Liquefaction at the St. Francis R	iver
	Bridge Site for PE 10% in 50 years and M=6.2	67
8.11	Example Slope Stability Results for St. Francis River Bridge Site	68
8.12	Estimated Flooding Zone Due to Wappapello Dam Failure	71
8.13	Region of Potential Flooding	71
8.14	Bridge General Elevation (New St. Francis River Bridge)	73
8.15	Mode 1, Period 0.2519 Seconds (New St. Francis River Bridge)	74
8.16	Mode 2, Period 0.2295 Seconds (New St. Francis River Bridge)	74
8.17	Mode 3, Period 0.1421 Seconds (New St. Francis River Bridge)	75
8.18	Mode 4, Period 0.0901 Seconds (New St. Francis River Bridge)	75
8.19	Mode 5, Period 0.0896 Seconds (New St. Francis River Bridge)	76
8.20	Shear Force Calculations	79
8.21	Calculations of Axial Loads and Column Shears	83
8.22	Calculations for Hooked Anchorage in Columns	85
8.23	Calculations for Splices in Longitudinal Reinforcement	86
8.24	Calculations for Transverse Confinement	86
8.25	Calculations for Column Shear	88
8.26	Calculations for Diaphragm Cross-Frame Members	89
8.27	Calculations for Abutment Displacements	90
8.28	Comparison of AASHTO Response Spectrum & Site Specific Response Spectrum	96
8.29	Bridge General Elevation (Old St. Francis River Bridge)	98
8.30	Mode 1, Period 1.3173 Seconds (Old St. Francis River Bridge)	100
8.31	Mode 2, Period 0.4773 Seconds (Old St. Francis River Bridge) Mode 3, Period 0.3673 Seconds (Old St. Francis River Bridge)	100
8.328.33	Mode 4, Period 0.2065 Seconds (Old St. Francis River Bridge)	101
o.33 8.34	Mode 5, Period 0.1501 Seconds (Old St. Francis River Bridge)	101 102
8.34 8.35	Old St. Francis River Bridge Plans	102
o.35 8.36	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old St.	113
0.30	Francis River Bridge Abutment PE 10% in 50 Years, Magnitudes 6.2 and 7.2	115
8.37	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old St.	115
0.07	Francis River Bridge Abutment PE 2% in 50 Years, Magnitudes 6.4 and 8.0	116
8.38	Cross-Section of Wahite Ditch Bridge Site Geology	117
0.00	cross section of wanter bridge blie Geology	11/

8.39	Accele	ration Time Histories for the Wahite Ditch Bridge Site	
	8.39a	PE 2% in 50 Years Magnitude = 6.4	119
	8.39b.	PE 10% in 50 Years Magnitude = 7.0	120
	8.39c	PE 2% in 50 Years, Magnitude = 7.8	121
	8.39d	PE 2% in 50 Years, Magnitude = 8.0	122
8.40		e Ditch Bridge Site Topography, Cross-Section and Boring Locations	123
8.41		rofile B-1 Wahite Ditch Bridge Site	125
8.42		Ground Acceleration vs. Depth for PE 10% in 50 Years Magnitudes 6.4 and 7.0	
		Ditch Bridge Site	126
8.43	Peak G	round Acceleration vs. Depth for PE 2% in 50 Years Magnitudes 7.8 and 8.0	
	Wahite	Ditch Bridge Site	127
8.44	Surfa	ce Ground Acceleration at the Wahite Ditch Bridge Site	
	8.44a	PE 10% in 50 years Magnitude = 6.4	128
	8.44 b	PE 10% in 50 years Magnitude = 7.0	129
	8.44c	PE 2% in 50 years Magnitude = 7.8	130
	8.4ed	PE 2% in 50 years Magnitude = 8.0	131
8.45		Acceleration at the Abutment Wahite Ditch Bridge	
	8.45a	PE 10% in 50 years Magnitude = 6.4	132
	8.45b	PE 10% in 50 years Magnitude = 7.0	133
	8.45c	PE 2% in 50 years Magnitude = 7.8	134
	8.45d	PE 2% in 50 years Magnitude = 8.0	135
8.46		Acceleration at the Wahite Ditch Bridge Pier	
	8.46a	PE 10% in 50 years Magnitude = 6.4	136
	8.46b	PE 10% in 50 years Magnitude = 7.0	137
	8.46c	PE 2% in 50 years Magnitude = 7.8	138
- ·-	8.46d	PE 2% in 50 years Magnitude = 8.0	139
8.47		ofile, CSR, CRR and Factor of Safety Against Liquefaction at the Wahite Ditch	
A 4 A	-	Site for M=6.4	141
		e Slope Stability Results for Wahite Ditch Bridge Site	144
	0	General Elevation (New Wahite Ditch Bridge)	145
		Period 0.2686 Seconds (New Wahite Ditch Bridge)	146
		Period 0.2558 Seconds (New Wahite Ditch Bridge)	146
		Period 0.0915 Seconds (New Wahite Ditch Bridge)	147
		Period 0.0854 Seconds (New Wahite Ditch Bridge)	147
	-	, Period 0.0729 Seconds (New Wahite Ditch Bridge)	148
	•	General Elevation (Old Wahite Ditch Bridge)	154
		Period 0.5641 Seconds (Old Wahite Ditch Bridge)	155 156
		Period 0.3518 Seconds (Old Wahite Ditch Bridge) Period 0.1809 Seconds (Old Wahite Ditch Bridge)	156
		Period 0.1229 Seconds (Old Wahte Ditch Bridge)	150
		Period 0.1025 Seconds (Old Wahte Ditch Bridge)	157
		General Elevation (Old Wahite Ditch Bridge)	162
	•	l Cross-Section of Old Wahite Ditch Bridge Abutment	102
0.04	8.62a	Plan of Old Wahite Ditch Bridge Abutment	166
		Cross Section of Old Wahite Ditch Bridge Abutment	166
		cross section of one france bren bringe froundent	100

8.63	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old	
	Wahite Ditch Bridge Abutment PE 10% in 50 Years, Magnitudes 6.4 and 7.0	167
8.64	Time Histories of Sliding, Rocking and Total Permanent Displacement of the Old	
	Wahite Ditch Bridge Abutment PE 2% in 50 Years, Magnitudes 7.8 and 8.0	168

LIST OF TABLES

Tal	ole	Page
4.1	Example of Data Structure Input to Database	8
5.1	Peak Ground Acceleration (Herrmann, 2000) (Source; USGS 1996 Seismic Hazard	
	Maps)	13
5.2	Magnitude and Distances for Selected Earthquakes, (Herrmann, 2000)	
	5.2a St. Francis River Bridge Site	14
	5.2b Wahite Ditch Bridge Site	14
5.3	Design Horizontal and Vertical Earthquake Accelerations	•
	5.3a St. Francis River Bridge Site	29
0 1	5.3b Wahite Ditch Bridge Site	29
8.1	Detail of Synthetic Ground Motion at the Rock Base of St. Francis River Bridge Site W	ith
	Corresponding Maximum Peak Horizontal Ground Acceleration	15
	8.1a PE 10% in 50 Years	45 45
0 7	8.1b PE 2 % in 50 Years	
0.2	Detail of Peak Ground Motion Used at the St. Francis River Bridge Site Rock Base, Gr Surface, Bridge Abutment and Pier	ouna
	8.2a PE 10% in 50 Years	65
	8.2b PE 2 % in 50 Years	65
8.3	The Different Zones of Soil Liquefaction for Different Factors of Safety	66
8.4	Soil Properties used for the Slope Stability Analysis, St. Francis River Bridge Site	66
8.5	Slope Stability Results for the St. Francis River Bridge Site	69
8.6	Natural Periods and Their Corresponding Vibration Modes (New St. Francis	07
0.0	River Bridge)	73
8.7	Elastic Moments Due to Transverse Acceleration	81
8.8	Elastic Moments Due to Longitudinal Acceleration	81
8.9	Elastic Moments Due to Vertical Acceleration	82
8.10		82
8.11		84
8.12		91
8.13		92
8.14		
	Column 2 New St. Francis River Bridge	93
8.15	Comparison of Moments for Time History and Response Spectrum Analysis for	
	Column 5 New St. Francis River Bridge	94
8.16	Comparison of Displacements for Time History and Response Spectrum Analysis for	
	Maximum Abutment Displacement. New St. Francis River Bridge	95
8.17	Comparison of AASHTO Response Spectrum vs. Site Specific Response	
	Spectrum (New St. Francis)	97
8.18	Natural Periods and their Corresponding Vibration Modes (Old St. Francis	
	River Bridge)	99
8.19	Summary C/D for Various Components of the Old St. Francis River Bridge for all	
	Earthquakes	108

8.20	Comparison of Moments for Time History and Response Spectrum Analysis for	
	Column 2 Old St. Francis River Bridge	110
8.21	Comparison of Moments for Time History and Response Spectrum Analysis for	
	Column 5 Old St. Francis River Bridge	111
8.22	Comparison of Displacements for Time History and Response Spectrum Analysis for	
	Maximum Abutment Displacement. Old St. Francis River Bridge	112
8.23	Displacement at Top of Old St. Francis Bridge Abutment	114
8.24	Detail of Peak Ground Motion at Wahite Ditch Bridge Site, Rock Base, Soil Surface,	
	Bridge Abutment and Pier	
	8.24a PE 10% in 50 Years	118
	8.24b PE 2 % in 50 Years	118
8.25	Detail of Peak Ground Motion Used at the Wahite Ditch Bridge Site Rock Base,	
	Ground Surface, Bridge Abutment and Pier	
	8.25a. PE 10% in 50 years	124
	8.25b PE 2% in 50 years	124
8.26	1 5	142
8.27		
	Slope Stability Analysis	142
8.28		143
8.29	Natural Periods and Their Corresponding Vibration Modes (New Wahite	
	Ditch Bridge)	145
8.30	Summary of all Earthquakes for New Wahite Ditch Bridge	152
	Comparison of AASHTO Response Spectrum vs. Site Specific Response	
	Spectrum (New Wahite)	153
	Natural Periods and their Corresponding Vibration Modes (Old Wahite Ditch Bridge)	155
8.33	Summary of all Earthquakes for Old Wahite Ditch Bridge	163
8.34	Comparison of Column Moments for Old Wahite Ditch Bridge	164
8.35	Displacement at Top of Old Wahite Ditch Bridge Abutment	166

APPENDICES

D.1Time Series for Study Sites	
D.2 Magnitude and Distance for Design Earthquakes	A184
D3 St. Francis River 10 % Probability of Exceedance in 50 Years	A185
D.4 St. Francis River 2 % Probability of Exceedance in 50 Years	A186
, i i i i i i i i i i i i i i i i i i i	A187
D.5 Wahite Ditch 10% Probability of Exceedance in 50 Years	A188
D.6 Wahite Ditch 2% Probability of Exceedance in 50 Years	A189

APPENDICES

А.	FIELD DATA	A1
	A.1 Symbols Used on Boring Information	A1
	A.2 St. Francis River Bridge Site Test Pits	A3
	A.3 St. Francis River Bridge Site Boring Logs	A6
	A.4 St. Francis River Bridge Site Cone Penetrometer Logs	A13
	A.5 Wahite Ditch Bridge Site Test Pits	A19
	A.6 Wahite Ditch Bridge Site Boring Logs	A24
	A.7 Wahite Ditch Bridge Site Cone Penetrometer Logs	A30
B.	LABORATORY DATA	A35
	B.1 Cyclic Stress Test Results	A35
	B.2 St. Francis River Bridge Site Laboratory Results	A37
	B.3 Wahite Ditch Bridge Site Laboratory Results	A43
C.	SOFTWARE DESCRIPTION	A48
	C.1 SHAKE91 and SHAKEDIT	A48
	C.1.1 SHAKE91	A48
	C.2.2 SHAKEDIT	A48
	C.2 Modified <i>DDRW2</i> Program	A48
	C.3 PCSTABLE5	A49
	C.4 SAP2000	49
D.	DETAILS OF SYNTHETIC GROUND MOTION	A51
	D.1 Task	A51
	D.2 Overview of problem	A51
	D.3 Defining earthquakes	A51
	D.4 Discussion	A56
Е.	DATABASE FOR EARTHQUAKE ANALYSIS	A89
F.	BRIDGE ABUTMENT AND PIER SUPPORTED ON A PILE GROUP	A90
	F.1 Stiffness and Damping Factors of Single Pile	A90
	F.1.1 Vertical Stiffness (k_z) and Damping Factors (c_z)	A90
	F.1.2 Torsional Stiffness (k_{ψ}) and Damping Factors (c_{ψ})	A90
	F.1.3 Sliding and Rocking Stiffness and Damping Factors	A93
	F.2 Group Interaction Factor	A94
	F.3 Group Stiffness and Damping Factors	A98
	F.3.1 Vertical Group Stiffness (k_z^g) and Damping Factors (c_z^g)	A98
	F.3.2 Torsional Group Stiffness (k_{ψ}^{g}) and Damping Factors (c_{ψ}^{g}) F.3.3 Sliding and Rocking and Cross Coupled group Stiffness and	A98
	Damping Factors	A99
	F.4 Strain-Displacement Relationships	A100
	F.5 Solution Technique for Displacement Dependent k"s and c's	A101
	F.6 Equations of Motion	A104

G. LIQUEFACTION ANALYSIS	A161
H MOMENT-ROTATION CURVE OF PILE FOUNDATION	S A185