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The issue of moisture diffusion in composite materials is important because of its 
associated problem of freeze and thaw. The volumetric expansion of water when it 
freezes to form ice results in stress concentrations at the inclusion tip that may 
synergistically interact with the residual tensile stresses in a laminate at low temperatures 
to initiate a crack. In addition, understanding the long-term effect of daily and/or seasonal 
freeze-thaw cycling on crack growth is of vital importance for structural durability. 
 
A theoretical framework for the calculation of the stress intensity factor, KI, of a pre-
existing crack in a composite structure due to the phase transition of trapped moisture. 
The constrained volume expansion of trapped moisture is postulated to be the crack 
driving force. The principle of minimum strain energy is employed to calculate the elastic 
field within an orthotropic laminate containing an idealized elliptic inclusion in the form 
of ice. It is postulated that a slender elliptical inclusion can be used to approximate the 
stress field at the crack face, which can be used to calculate the stress intensity factor for 
the crack. 
 
The model developed as above, is verified. The verification is based on comparisons of 
the stresses in an elliptic elastic inclusion and the stress intensity factor with a special 
isotropy and with finite element analysis for the case of orthotropy. The results indicate 
that the stress state in a slender elliptic elastic inclusion can be used to approximate the 
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SUMMARY

With the increasing use of fibre composites in applications such as cryogenic liquid
hydrogen tanks and repair/retrofitting of bridges, the diffusion and freezing of moisture
to form ice is an issue of growing importance. The volumetric expansion of water when
it freezes to form ice results in stress concentrations at the inclusion tip that may
synergistically interact with the residual tensile stresses in a laminate at low temperatures
to initiate a crack. In addition, understanding the long-term effect of daily and/or
seasonal freeze-thaw cycling on crack growth in a laminate is of vital importance for
structural durability.

The objective of this paper is to establish a theoretical framework for the calculation of
the stress intensity factor (KI) of a pre-existing crack in a composite structure due to the
phase transition of trapped moisture. The constrained volume expansion of trapped
moisture due to freezing is postulated to be the crack driving force. The principle of
minimum strain energy is employed to calculate the elastic field within an orthotropic
laminate containing an idealized elliptical elastic inclusion in the form of ice. It is
postulated that a slender elliptical elastic inclusion can be used to approximate the stress
field at the crack face, which can subsequently be used to calculate the stress intensity
factor, KI, for the crack. The verification of the analytical model predictions and some
potential applications will be published in a separate paper.

1. INTRODUCTION

The use of fibre reinforced polymers (FRP) for
infrastructure retrofit has experienced widespread
use in Western Europe and Japan, but has only
recently been attempted in the United States. Despite
the fact that FRP composites have seen extensive
application as performance enhancing materials in
the aerospace and defence industries, their application
in the civil engineering sector has been slow. One of
the chief reasons is a lack of reliable predictive
models and sound design guidelines for their use in
civil infrastructure applications, especially in
aggressive environments that involve extreme
temperatures and humidity.

These FRP laminates may contain flaws such as
matrix cracks and voids as a result of the manufacturing
processes. These flaws result in stress concentrations
that, in conjunction with internal residual stresses,
may lead to initiation of larger cracks. When these

cracks are filled with a material, then we have
something called an ‘inclusion problem’. These
inclusions disturb the uniformity of an elastic medium
because the inclusion has elastic properties differing
from those of the surrounding matrix.

One example of an inclusion problem is the freezing
of moisture in pre-existing cracks in FRP and in FRP
bonded interfaces. With the increasing use of fibre
composites in application such as cryogenic liquid
hydrogen tanks and repair/retrofitting of bridges
etc., the diffusion and freezing of moisture to form
ice is an issue of growing importance. The volumetric
expansion of water when it freezes to form ice
results in stress concentrations at the inclusion tip
that may synergistically interact with the residual
tensile stresses in a laminate at low temperatures to
initiate a crack. In addition, understanding the long-
term effect of daily and/or seasonal freeze-thaw
cycling on crack growth in a laminate is of vital
importance for structural durability.
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Most of the studies in the theory of elasticity have
focused primarily on structures with inclusions with
far field-applied stress. Some of these studies
investigated martensitic transformation (thermal
expansion, phase transition or plastic flow), but have
limited themselves to the calculation of stresses in
the inclusion-matrix system, with no discussion of
crack growth.

Verghese at al1 showed by presenting data obtained
from differential scanning caloriemetry (DSC) that a
composite system did have traces of freezable water.
Scanning electron and optical micrographs shown by
the authors indicate the presence of interfacial cracks
in composites. DSC data on a neat, unreinforced vinyl
ester resin sample showed no freezable water. Though
water resides in the free volume in a polymer, the
space available is too small to allow water to freeze
from a thermodynamic perspective. However,
experiments on a glass vinyl ester composite showed
interfacial cracks large enough for water to freeze.
Verghese et. al. conclude that it is impossible to freeze
water in a pure resin, like vinyl ester. However,
composite systems have crack dimensions large
enough to facilitate the freezing of water.

Lord and Dutta2 highlighted the importance of cracks
in the matrix and fibre-matrix interface as being the
cause of the damage in composite materials. When
these cracks form beyond a certain critical size and
density they grow to form macroscopic matrix cracks.
They also focused attention on thermally induced
residual stresses. Decreasing the temperature from
the cure temperature to room or cold temperatures
produces residual stresses, due to the difference
between fibre and matrix stiffness for a single layer
unidirectional lamina. In the case of a multilayered
laminate, residual stress are produced when the
laminate is subjected to a change in temperature
because of differences between the elastic properties
in adjacent plies. The authors showed that these
residual stresses are of significant magnitude and can
lead to the creation of microcracks. Moreover, when
the moisture condensate freezes, internal stresses are
caused in the laminate that could initiate crack
propagation and/or ply delamination.

Dutta3 also carried out experiments on the effect of
cold temperature thermal cycling on the stiffness
properties on a number of composites. He noted that
there was little effect on fibre-dominated behaviour
such as tensile and flexural stiffness. On the other
hand, significant reduction was observed in the matrix
dominated torsional stiffness as a result of low

temperature thermal cycling. Acoustic emission
results showed increased rate of acoustic emissions
at decreasing temperatures, which indicates the
development of micro cracks.

The determination of the effects of holes and cavities,
or flaws, in an elastic solid when the stress at points
remote from the flaw is uniform has been achieved for
circular and elliptical holes. Goodier4 applied
solutions of elasticity to investigate the effect of small
spherical and cylindrical inclusions. He derived
numerical results for gaseous inclusions, perfectly
rigid inclusions and slag globules in steel and
reinforcing rods in concrete.

Donnell5 found the stress distribution for the case of
an infinite plate under any uniform direct or shear
edge forces, having an elliptical hole (or region) filled
with a material of different stiffness from the rest of
the plate. The stiffness ratio between the moduli of
elasticity of the inclusion and the matrix was allowed
to have any value, but the Poisson’s ratio was assumed
to be the same for both the inclusion and the matrix.
Also, the solution was strictly two-dimensional.

Eshelby6 considered martensitic transformation for
an ellipsoid. The inclusion in a homogeneous elastic
medium undergoes a permanent change of form,
which, in the absence of the constraint imposed by
the surrounding (the matrix), would be a prescribed
uniform strain. Because of the displacement constraint
on the inclusion due to the presence of the matrix,
stresses will be present in both the inclusion and the
matrix. The elastic field was found with the help of a
sequence of imaginary cuttings, straining and welding
operations. The strain in the ellipsoid was expressed
in the form of elliptical integrals and it was found to
be uniform.

The three-dimensional inhomogeneity problem was
also discussed by Eshelby7. Special cases of
inclusions and inhomgeneities in the form of the
general ellipsoid with three unequal axes were
considered. Formation of precipitates was also given
consideration in this analysis.

Although Eshelby has demonstrated some general
theorems of great interest for martensitic
transformation using elegant methods, his solutions
involved analytically intractable integrals of a
formidable nature. This applies even in two-
dimensional situations, i.e. where the inclusion has
the shape of a long cylinder of elliptical cross-section,
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under conditions of plane strain or appears as an
elliptical region of a thin plate under conditions of
generalized plane stress. Jaswon and Bhargava8

obtained explicit solutions in these cases by an
approach based on complex variable formulation. A
detailed quantitative analysis of the stress and
displacement in the surrounding matrix outside the
elliptical inclusion thus becomes possible.

Bhargava and Radhakrishna9 studied the above
martensitic transformation problem using the
minimum strain potential method. They determined
the elastic field in the infinite medium (the matrix)
around the inclusion, the strain energy and the
equilibrium size of an elliptical inclusion, with elastic
constants differing from those of the matrix.

The elastic field generated in two bonded isotropic
half-planes containing either a circular or a rectangular
inclusion was solved by Aderogba and Berry10. The
analysis was based upon the two-dimensional form
of the Papkovich-Neuber stress function approach.

Stress state and crack extension criteria for a two-
dimensional elastic problem of a crack lying along
the interface of a rigid circular inclusion embedded
in an infinite elastic solid have been considered by
Toya11. He assumed that the interfacial crack is opened
by equal and opposite normal pressures on opposite
sides of the crack. The formulation presented by
Muskhelishvili12 was used for the explicit solution of
stresses and displacements. The stresses and
displacements solutions were then applied in
conjunction with Griffith’s virtual work argument to
solve the conditions for which the crack growth may
occur along the interface.

A crack lying along the interface of an elastic circular
inclusion, embedded in an infinite elastic solid, was
also considered by Toya13. It was assumed that each
of the two materials was homogeneous and isotropic.
The stress state at infinity is general biaxial tension
and the crack faces were free from traction, unlike in
Toya’s previous work11.

Motivation for the present study originates from the
fact that composite materials are being used
increasingly in low temperature environments. The
existence of interfacial cracks and the freezability of
moisture in voids has been clearly established by
researchers1,2,3. A review of the literature shows that
although extensive work has been done on stress
fields in structures with inclusions4,6,9, a framework

for the analysis of freeze-thaw in orthotropic composite
structures based on fracture mechanics is yet to be
established. In addition, a guideline for the conditions
of crack growth in composites due to daily and/or
seasonal freeze-thaw cycles is necessary for safe
structural design.

The objective of this work is to establish a theoretical
framework for the calculation of the stress intensity
factor (KI) of a pre-existing crack in a composite
structure due to the phase transition of trapped
moisture. The constrained volume expansion of
trapped moisture due to freezing is postulated to be
the crack driving force. The principle of minimum
strain energy is employed to calculate the elastic
field within an orthotropic laminate containing an
idealized elliptical elastic inclusion in the form of
ice. It is postulated that a slender elliptical elastic
inclusion can be used to approximate the stress field
at the crack face, which can subsequently be used to
calculate the stress intensity factor, KI, for the crack.
The verification of the analytical model predictions
and some model applications will be presented in a
separate paper.

 2. MODELING OF STRESSES DUE TO AN
ELLIPTICAL INCLUSION IN AN

ORTHOTROPIC MEDIUM

In this section it is postulated that the problem of an
ice filled cavity in FRP is equivalent to that of an
inclusion problem. An inclusion, which undergoes
volumetric dilatation due to temperature change
and/or phase change, can be replaced by an equivalent
traction force acting on the interface between the
matrix and the inclusion. The schematic shown in
Figure 1 depicts the equivalence.

The theory of minimum strain energy was used to
model the inclusion in an orthotropic medium. The
theory14 states that the displacement field that satisfies
the differential equations of equilibrium, as well as
the conditions at the bounding surface, yields a
smaller value for the potential energy of deformation
than any other displacement field that satisfies the
same configurations at the bounding surface.

Following the strain-energy method for isotropic
material presented by Bhargava and Radhakrishna9,
the present approach consists of taking an arbitrarily
fixed position of the common boundary of inclusion
and matrix, and considering the resulting equilibrium
configuration. It should be noted that in this
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derivation, both the inclusion and the surrounding
matrix medium are assumed to be orthotropic elastic.
The elastic displacements of the inclusion are
calculated with reference to the free surface
configuration. From these displacements, the elastic
strain energy in the inclusion is then derived. The
elastic displacement of the interior boundary of the
matrix medium is calculated from the initial
unperturbed position. Given the displacement of
the interior of the matrix, the elastic stress and strain
fields in the matrix can be calculated by the complex
variable method. From these elastic fields, the elastic
strain energy of the matrix is then obtained. The sum
total of the energy in the inclusion-matrix system is
a scalar addition of the individual strain energies.
Finally, the equilibrium position is obtained by
minimizing the total strain energy.

2.1 Stress-Strain Relations

The generalized Hooke’s law gives the stress-strain
relation for the orthotropic matrix and can be written
in tensor notation as

  σ εi ij jc= (1)

conversely,   ε σj ij ia=        i j, ,...,= 1 6

where ei are the six strain components, sj are the six
stress components based on the Voigt notation, aij is
the compliance matrix and cij is the stiffness matrix.

The stiffness matrix, cij consists of 36 constants.
However, the stiffness matrix is symmetric, by strain
energy consideration. Thus, not all 36 constants are

independent. For a characteristic anisotropic material
there are only 21 independent constants in the
compliance matrix.

Further, if there are two orthogonal planes of material
property symmetry for a material, symmetry will
exist relative to a third mutually orthogonal plane.
The stress-strain relation in coordinates aligned with
principal material directions are said to define an
orthotropic material and have only 9 independent
constants. The stress strain relationship for orthotropic
material is shown in Equation (2)15.

If at every point of a material there is one plane in
which the mechanical properties are equal in all
directions, then the material is called transversely
isotropic. For this case, a22 = a11, a23 = a13, a55 = a44 and
a66 = 2(a11- a12), the stress strain relations thus have
only five independent constants.

If there are an infinite number of planes of material
property symmetry, then the relation simplifies to the
isotropic material relations with only two independent
constants. Then the stress-stain relation in terms of
compliance matrix is given as in Equation (3).

The engineering constants are generally the slope of
a stress-strain curve (e.g., E = σ/ε) or the slope of a
strain-strain curve (e.g. v = -εy/εx). Thus, the
components of the compliance matrix, aij, are
determined more directly than those of the stiffness
matrix, cij. For an orthotropic material, the
compliance matrix components in terms of the
engineering constants are shown in Equation (4),

Figure 1  Inclusion problem equivalence assumption
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where E1, E2, E3 = Young’s (extension) moduli in the
x-, y- and z-directions; vij = Poisson’s ratio (v12 = -εy/
εx, v13 = -εz/εx, v23 = -εz/εy); G23, G31, G12 = shear moduli
in the y-z, z-x and x-y planes.

Equation (4) reduces to the compliance matrix for an
isotropic material by substituting E1 = E2 = E3 = E,
G23 = G31 = G12 = G and vij = v.

The three principal direction x, y and z are as shown
in Figure 2.

Under plane strain conditions we have εz = 0. Thus,
eliminating σz from Equation (2), the stress-strain
relation reduces to Equation (5).
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Figure 2  Principal directions of an orthotropic material
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where the β matrix is called the reduced compliance
matrix for plane strain conditions and
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2.2 Derivation of Strain Energy for the Elliptical
Inclusion

Consider an elliptical inclusion with semi-axes ‘a’
and ‘b’ in an infinite medium, which undergoes a
dilatational deformation to a similar elliptical shape
with semi-axes a(1+δ1) and b(1+δ2) in the absence of
the matrix as shown in Figure 3(a). Further, assume
the equilibrium boundary to be an ellipse of semi-

axes a(1+ε1) and b(1+ε2) when matrix is present, as
show in Figure 3(b).

Then the displacement field Ux and Uy, in the complex
plane z = x + iy for the inclusion, is given by

    U xx = −( )ε δ1 1  and     U yy = −( )ε δ2 2 (7)

The strains in the inclusion are

    ε ε δx = −( )1 1  and     ε ε δy = −( )2 2 (8)

and the stresses in the inclusion under plane strain
conditions are
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Figure 3  (a) Schematic of elliptical inclusion for the case of unconstrained expansion; (b) schematic of elliptical
inclusion for the case of constrained expansion
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where β11, β22, and β12 are the components of the plane
strain reduced compliance matrix defined in Equation
(6), σx and σy are normal stress components and τxy is
the shear stress component in the inclusion.

Substituting the stresses and strains in the strain
energy density equation  (Equation 10), and
simplifying, we get the strain energy density in the
inclusion as in Equation 11.

It should be noted that the energy density in the
inclusion is uniform, i.e., independent of spatial
coordinates. Hence, the total elastic strain energy
(WI) for the inclusion is obtained by multiplying the
energy density of the inclusion by the area of the
ellipse (assuming unit depth), giving Equation 12.

2.3 Derivation of Strain Energy for the
Orthotropic Matrix

A body is called homogeneous when its elastic
properties are identical in all parallel directions
passing through any of its points, or in other words,
all identical elements in the shape of a rectangular
parallepiped with mutually parallel edges possess
identical elastic properties. And a homogeneous body

with three (longitudinal, radial and transverse)
mutually perpendicular planes of elastic symmetry
passing through every point is called an orthotropic
material.

In the current study we assume the matrix (i.e. the
FRP) to be a homogeneous elastic body possessing
fully orthotropic properties.

According to Lekhnitskii16 any stress function F(x,y),
for an orthotropic matrix, satisfies the equilibrium
function, Equation 13, where, a11, a22, a12 and a66 are
the terms of the compliance matrix and are given by
Equation 14, where E1 and E2 are the tensile moduli
along the principal directions x and y; G12 is the shear
modulus which characterizes the change of angles
between principal directions and v12 is the Poisson’s
ratio which characterizes the strain in direction y
during tension in x direction.

The complex stress function F(x, y) can be expressed
as in Equation 15, where µk (k = 1, 2, 3, 4) are the roots
of the characteristic equation.µ1, µ2, µ3 and µ4 could
be either complex or purely imaginary but may not be
real. Also,   µ µ3 1=  and   µ µ4 2= , where “bar” indicates
complex conjugate.
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The displacements u and v along global X and Y
directions respectively, and stresses σx, σy and τxy, in
an orthotropic matrix in terms of the stress function
are given as16:

    

u x y p z p z

v x y q z q z

( , ) Re

( , ) Re

= ( ) + ( )[ ]
= ( ) + ( )[ ]

2

2

1 1 1 2 2 2

1 1 1 2 2 2

φ φ

φ φ (16)
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where

    

z x y z x y
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2.3.1 Solution of Boundary Condition

To solve the inclusion problem, we assumed the
displacement of the outer boundary of the medium to
be known. Thus, the displacement Equation (16) is
also the boundary condition.

The boundary of the ellipse is mapped onto a unit
circle by conformal transformation12:

    z w= ( )ζ (19)

Such a mapping function is given by

    
z

a b a b= + + −
2

1
2ζ

ζ (20)

Equation (20) performs the transformation of the
plane with the elliptical hole into the unit circle

  ζ < 1. On the boundary of this unit circle   ζ σ θ= = ei .
Thus,   σσ = 1, where σ is the complex conjugate of σ.

The displacements on the boundary of the matrix are
given by

    
u x

z z
and v y

z z
i

= = + = = −ε ε ε ε1 1 2 22 2
  (21)

where ε1 and ε2 are as defined in Figure 3. Transforming
Equation (21) using Equation (20) on the boundary of
the unit circle we get

    
u

a
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i b
( )   ( )σ ε σ

σ
σ ε σ

σ
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1 2

2
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2
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(22)

Equating Equation (16) and Equation (22) we get the
boundary condition in terms of the displacement as

    

2
2

1

2
2

1

1 2
1

1 2
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Re ( ) ( )
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p A p B
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i b
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(23)

where functions A(σ) and B(σ) are the transformed
equivalent of functions φ1(z1) and φ2(z2) respectively.
And, p1, p2, q1 and q2 are as defined in Equation (18).

The functions A(σ) and B(σ) can be determined by
using the Schwartz formula below, as discussed by
Savin17

    

X
i

Y
d

ic( ) ( )ς
π

σ σ ς
σ ς

σ
σ

= +
−

+∫1
2 0

Γ
(24)

where the function X(ς) is holomorphic inside the
unit circle Γ, and Y(σ) is the value of its real part on
the contour of the unit circle. c0 is a real constant
which can be disregarded since it has no influence on
the stress field.

Further, we assume

    µ µ1 1 2 2= =id and id  (25)

as µ1 and µ2 are purely imaginary roots. The two real
parameters d1 and d2 characterize the degree of
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orthotropy i.e., they characterize how much a
property of a given material differs from that of an
isotropic material. For the special case of isotropy,
d1 and d2 are identical to one. Equation (18), can be
thus rewritten as,

    

p a a d p a a d

q
a a d

id
q

a a d
id

1 12 11 1
2

2 12 11 2
2

1
22 12 1

2

1
2

22 12 1
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2

= − = −

= − = −

      

      

(26)

It can be shown that the following equation holds for
the orthotropic medium,

    a d d a11 1
2

2
2

22= (27)

Making use of Equations (25), (26) and (27) and and
applying Schwartz formula (24) and Cauchy’s
formulae12, we get the corresponding expressions for
A(σ) and B(σ) from Equation (23) as follows

    

A
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where
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2.1.2 Strain Energy in the Matrix

The stresses in the orthotropic matrix at the interface
boundary,   σx

c ,   σy
c  and   τxy

c , are obtained by
transforming Equation (17) and making use of Equation
(28), as in Equation (30) below.

The strain energy in the matrix, WM, due to work done
at the boundary by surface traction is given by

    
W p u p v dsM nx

c
ny
c= +∫1

2
( ) (31)

where ds is the element of arc length. The surface
tractions   pnx

c  and   pny
c  are given by
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c

x
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ny
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xy
c

y
c

= +
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σ τ

τ σ

cos( , ) cos( , )

cos( , ) cos( , )
(32)

where n is the outward drawn normal.

Solving the integral Equation (31) using Equations
(30) and (32) we get an expression for total strain
energy in the matrix
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2.2 Equilibrium Configuration

The total energy of the elastic inclusion-matrix
system is obtained by scalar addition of WI and WM,
from Equations (12) and (33) and is given by
Equation (34).

(30)
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Minimizing W with respect to ε1 and ε2, and
solving for them we get Equation (35) (see also
Equation (36)).

The stresses in the inclusion are derived by
substituting Equations (35) and (36) in Equation (9).
The inclusion stress σx and σy are both compressive
stresses and are spatially uniform. However, the
compressive stress  σy gives rise to a stress
concentration at the tip of the ellipse and could
potentially act as a crack driving force (see Figure 1)
as will be discussed in the next section.

3. MODELING OF DELAMINATION
CAUSED BY FREEZE-THAW

3.1 Stress Intensity Factor for Slender Ellipses

For the region of the notch tip where ‘r’ is small
compared with other planar dimensions, the stress
field becomes18 Equation (37).

where ρ (radius of curvature of the notch), r and θ are
as defined in Figure 4, and KI is the Mode I stress
intensity factor.
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and for an arbitrary distribution from ξ1 to ξ2:

    

K a
p d

I =
−

∫π
π

ξ

ξ

ξ

ξ

ξ
2

1 2
1

2

(41)

For the special case when pξ = σy, i.e, a uniform
pressure loading on the crack face,

  K aI y= σ π (42)

which shows that the stress intensity factor for a
uniform pressure over the crack face is exactly
equivalent to that due to a uniform stress remote
from the crack.

Unfortunately, the exact solution for the Mode I
stress intensity for the case of ice inclusion within a
crack, as depicted by Figure 7, cannot be obtained
using Equation (41) because the analytical form of
the actual stress distribution, Pξ, on the crack
boundaries is mathematically intractable. However,
it is hereby postulated that an approximate solution
for the Mode I stress intensity factor for the crack

Figure 4  Slender notch Figure 5  Elliptical hole with remotely applied stress

For the elliptical hole shown in Figure 5, as ρ → 0 we
recover the sharp crack tip. Extending the above result,
Equation (37), to an elliptical hole through a wide plate
where the semi-major axis, a, is perpendicular to a
remotely applied tension stress, σ, the comparable
crack solution obtained as ρ → 0 is given by,

  K aI = σ π (38)

For a crack in a large plate of thickness B loaded by
equal and opposite point forces, P, on the surface of
the crack at a distance d from the centre of the crack,
the stress intensity factor is

    
K

P
B

a

a d
I =

−

2
2 2π (39)

Solutions for distributed loads on the crack face may
be obtained by expressing P, in Figure 6, as due to a
local pressure Pξ acting at a distance ratio ξ = 1-c/a
from the center, where c is as defined in Figure 7.

The incremental stress intensity dKI at the crack tip
due to this force is19:

    

dK
p d

aI =
−

2

1 2

ξ

π
ξ

ξ
π (40)

Figure 6  Ellipse in an infinite sheet with symmetrical
splitting forces P

Figure 7  Crack face loaded by distributed traction force
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may be obtained by assuming that the actual stress
distribution, Pξ, may be replaced by an uniform
stress distribution, σ, due to an elliptical ice inclusion
having the same length and width as the original
crack, as shown schematically in Figure 8. Thus,
after the uniform normal stress σ, has been obtained
for the equivalent elliptical inclusion using Equation
(9), this uniform traction can then be used in Equation
(42) to obtain the approximate Mode I stress intensity
factor for the crack with ice inclusion.

2.2 Life Prediction for Freeze-Thaw Cycles

Freeze-thaw cycles could be an important reason for
crack growth in an inclusion-matrix system. If the
plastic zone at the crack tip is sufficiently small, for
a growing crack in the presence of a constant-
amplitude cyclic stress intensity, the conditions at
the crack tip are uniquely defined by the current KΙ
value. Functionally the crack growth law can be
expressed as20

    

da
dN

f K= ( )∆ (43)

where ∆K = Kmax–Kmin and da/dN is the crack growth
per cycle.

The relation between da/dN and ∆K was given by the
Paris Law,

    

da
dN

C K m= ( )∆ (44)

where C and m are material constants that are
determined experimentally. Also, Equation (44) is
valid only in the linear region of the log(da/dN) Vs
log(∆K) graph.

The number of stress cycles (Nf) required to propagate
a crack from an initial length, a0, to a final length, af,
is given by:

    

N
da

C K
f m

a

af

= ∫ ( )∆
0

(45)

For the present problem, the total number of cycles,
Nf, for a crack to grow from a0 to af is estimated by
substituting KI (Equation (42)) for ∆K in Equation (45):

    
N dN

da

C K
f

N

I
ma

af

i

f
= =∫ ∫0 ( ) (46)

4. CONCLUSIONS

An analytical formulation to calculate the stress
intensity factor KI due to ice inclusion within a crack
in both transversely isotropic and orthotropic matrices
was presented. The formulation combines elasticity
solutions for elliptical inclusions with established
concepts of fracture mechanics. It was postulated that
an approximate solution for the Mode I stress intensity
factor for the crack may be obtained by assuming that
the actual normal stress distribution on the crack
face, Pξ, may be replaced by an uniform stress
distribution, σ, due to an elliptical ice inclusion
having the same length and width as the original
crack. A life prediction methodology for cyclic crack
growth due to freeze-thaw was also developed. The
verification of the analytical model predictions and
some potential applications will be presented in a
separate paper.
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1. INTRODUCTION

Motivation for the present study originates from the
fact that composite materials are being progressively
used in cold temperature environments. The existence
of interfacial cracks and freezability of moisture in
these cracks has been established by several
researchers, and a detailed overview has been
presented in a companion paper1. A review of the
literature shows that although considerable work has
been done on stress fields in structures with inclusions,
a framework for the fracture mechanics analysis of
freeze-thaw cycling in orthotropic composite
structures is yet to be established. In addition, a
guideline for conditions of crack growth in composites
due to freezing is necessary for safe structural design.

Multiple defects exist (e.g. cracks, inhomogeneities,
etc.) in most composites laminates. It is desirable that
mechanical behavior of materials and structures are
determined exactly by using effective approaches.
But, because of mathematical intractability, many
such problems cannot be solved analytically except
in few special cases, e.g., defects occurring in a
regular array, or simple shapes, etc. However,
numerical calculations have shown that for two
inhomogeneities embedded in two-dimensional and
three-dimensional isotropic or anisotropic elastic
media2-5, the interaction between the inhomogeneities

SUMMARY

Verifications and applications of an analytical model developed previously for the
calculation of mode-I stress intensity factor of a pre-existing crack in an orthotropic
composite structure due to the phase transition of trapped moisture are presented in this
paper. The verifications are based on comparisons of the stresses in an elliptic elastic
inclusion and the stress intensity factor with a special case of isotropy (for which there
exists an analytical solution) and with finite element analysis for the case of orthotropy.
The results indicate that the stress state in a slender elliptic elastic inclusion can be used
to approximate the stress field at the crack face, which could subsequently be adopted
to determine the stress intensity factor. Analyses of the delamination and fatigue life
prediction for freeze-thaw cycling are provided as specific applications of the model.

becomes negligible when the distance between them
is larger than about four times the characteristic
length of inhomogeneity. In other words, results from
the analysis of a single inhomogeneity remain valid
for numerous defects if the distance between any two
defects is larger than four times the characteristic
length of the defect.

It is well known that a slender ellipse can, in the limit,
simulate a crack. Our research therefore focuses on an
elliptic inclusion (inhomogeneity) embedded in
orthotropic laminates. Wang et. al6 have investigated
delamination induced by a single crack, i.e. an intra-
ply transverse crack or an inter-ply transverse crack
in composite laminates. To our knowledge, an
analytical solution to an inclusion in an orthotropic
matrix has not been developed. Actually,
investigations on voluminal inhomogeneity other
than crack (without any volume), are relatively few
because of difficulty in developing closed form
solutions. Especially, the extension of the
corresponding solution to problems in the area of
anisotropic and composite materials is, undoubtedly,
a formidable and challenging task. We have attempted
to obtain a simple yet elegant form of the solution for
the stress state in the inclusion, as described in a
companion paper1. The main focus of this manuscript
is on verification and application of the proposed
model. The verification is based on comparisons
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with a special case of isotropy (for which there exists
an analytical solution) and with finite element analysis
for the orthotropic case.

It should be noted that the solution for single defect
(crack) is of great importance in the analysis of both
isotropic and anisotropic materials. This is because
initially several initiation sites (imperfections) may
evolve, and then small defects (cracks) will coalesce
to produce large defects (cracks), and eventually one
dominant defect (crack) will reach a maximum
allowable size. Furthermore, commonly used methods
for multiple defects are based on elastic fields of the
single defect 7,8.

The objective of this paper is to provide benchmark
verifications of a proposed analytical model1 for the
calculation of the stress intensity factor (KI) of a pre-
existing crack in a composite structure due to the
phase transition of trapped moisture. The constrained
volume expansion of trapped moisture due to freezing
is postulated to be the crack driving force. The principle
of minimum strain energy is employed to calculate the
elastic field within an orthotropic laminate containing
an idealized elliptical elastic inclusion in the form of
ice. It is postulated that a slender elliptic elastic
inclusion could be used to approximate the stress field
at the crack face, which could subsequently be used to
calculate the stress intensity factor, KI, for the crack.
Benchmark verifications of the analytical model
predictions and some specific applications regarding
static and fatigue failure caused by freeze-thaw are
presented in this paper.

2. RESULTS AND APPLICATION

The analytical derivation presented in a companion
paper1 is benchmarked using finite element analysis
(FEA). The J-integral contour is calculated using FEA.
Since the J-integral is equal to the strain energy
release rate, G, for an elastic material, the stress
intensity KI is calculated using the following approach.
The energy release rate, G, quantifies the net change
in potential energy that accompanies an increment of
crack extension. The stress intensity factor, K,
characterizes the stresses, the strains and the
displacements near the crack tip. The energy release
rate describes global behavior, while K is a local
parameter. For linear elastic isotropic materials, K
and G are uniquely related through the elastic modulus
E and Poisson’s ratio ν as,

G
K
EI

I=
′

2

(1)

where E′ = E for plane stress

and ′ =
−

E
E

1 2ν
 for plane strain

Linear Elastic Fracture Mechanics (LEFM) can be
applied to anisotropic bodies with cracks in the same
way as it is for isotropic material. The relation between
G and K for an orthotropic body in plane stress Mode–
I loading is given by 9,
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where, the aij’s are the components of the compliance
matrix for orthotropic elastic body. A solution for
plane strain formulation is obtained by replacing aij
in Equation (2) by βij (also see equation (6) in Roy et
al1), where ,
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The strain energy release rate calculated using
finite element analysis (FEA) are converted to
appropriate stress intensity factor using Equations
(1) and (2), and then compared with the KI from the
analytical derivation.

3. FINITE ELEMENT MODELING

The modeling is performed using a commercial finite
element package, ABAQUS, and the finite element
mesh is developed using I-DEAS pre-processor graphics
software. Two separate inclusion configurations are
modeled: (a) elliptic inclusion with blunt tip (shown
in Figure 1) and (b) inclusion with sharp crack tip
(shown in Figure 2). Here, “a” defines the length of the
semi-major axis of the ellipse shown in Figure 1, and
also the length of the crack shown in Figure 2; “b”
defines the length of the semi-minor axis of the ellipse
in Figure 1, and also the height of the inclusion in
Figure 2. For each of these configurations, five cases
each with different a/b ratios (a/b = 3, 6, 10, 15, 30 or
b/a = 0.33, 0.16, 0.1, 0.06, 0.03) are modeled. The
dimension of the surrounding matrix medium, 0.25 m
x 0.5 m, is kept constant to simulate the infinite elastic
plane assumed in the analytical derivation1. The semi-
major axis, a, of the ellipse and the crack is also held
constant at 0.03m. Only the semi-minor axis, b is
changed accordingly to obtain the desired a/b ratio.
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Eight node isoparametric plane-strain quadrilateral
elements are used in all the FEA cases. For the
elliptical inclusion case, the ice and the orthotropic
matrix are modeled with bonded common edge, as
shown in Figure 1. However, in the sharp crack
inclusion model, the interface between the matrix
and the inclusion is modeled as a fully debonded
surface to facilitate numerical convergence of the J-
integrals computed along different contours (see
Figure 3). The crack surface is modeled using slave
and master contact surface option available in
ABAQUS. Invoking symmetry about both global X
and Y axis, only one quarter of the inclusion is
modeled. Roller supports are applied on all nodes
along the X and Y axis as boundary conditions for the
problem depicted in Figures 1 and 2.

Figure 1. FEA model of blunt elliptical inclusion Figure 2. FEA model of inclusion with sharp crack tip

Figure 3. Focused mesh in ABAQUS for J-integral evaluation

In ABAQUS, several concentric contours integral
evaluations need to be performed at the crack tip for
the accurate computation of J-integral. Each contour
is a ring of elements completely surrounding the
crack tip from one crack face to the opposite crack
face, as shown in Figure 3. ABAQUS automatically
finds the elements that form each ring from the node
given as the crack tip from one crack face to the other.
Hence, it is necessary to specify the number of contours
to be used in calculating the J-integral.

The analysis requires the node number of the crack
tip. It is also necessary to provide the direction cosine
of the crack front, which is input into ABAQUS as the
crack extension direction. In the case of the sharp
crack, the inverse square root singularity at the crack
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tip is introduces in order to improve the accuracy of
the J-integral. This is achieved by collapsing the
quadrilateral elements nearest to the crack tip into a
focused mesh of triangular elements, and by moving
the element mid-side nodes to the quarter-point as
illustrated in Figure 3. The computed value of the J-
integral from each of the contours is in close agreement,
thereby indicating convergence of the J-integral.

The Carbon/Epoxy composite used in the benchmark
analyses is T300/5208 with the following in-plane
orthotropic material properties,

E1 = 181 GPa G12 = 7.17 GPa

E2 = 10.3 GPa ν12 = 0.28 (4)

In the FEA model, the ice formation process is
simulated by an equivalent material expansion due
to a unit change in temperature. Since freezing occurs
at constant temperature (0° C for water) there is no
expansion or contraction in the surrounding matrix
during this process. Therefore, the linear expansion
for the matrix is taken as zero during freezing. The
only change in geometry is due to the expansion
within the solid inclusion due to a phase transition
from water to ice. The isotropic material properties of
the ice inclusion used for the analysis are

E = 10.3 GPa

ν = 0.33

α = 0.029 m/°C (5)

where α is the effective coefficient of linear expansion
of water when it freezes to form ice.

4. BENCHMARK RESULTS FOR
TRANSVERSELY ISOTROPIC PROBLEM

For the purposes of verifying analytical results
presented in the companion paper1, first, the
orthotropic matrix formulation is benchmarked by
simplifying the formulation to isotropic matrix
material (refer to Equation (35), Roy et al1), and results
are compared with known analytical solutions by
Bhargava et al1°. Then, the present results are also
benchmarked using FEA solutions for a specific
transversely isotropic matrix.

The expressions for stresses, and displacements in an
elliptical inclusion embedded in an isotropic matrix,
as derived by Bhargava et al1° are written as follows,

σx = λ1 (ε1 + ε2 – δ1 – δ 2) + 2µ1 (ε1 – δ1)

σy = λ1 (ε1 + ε2 – δ1 – δ 2) + 2µ1 (ε2 – δ2)

τxy = 0

Ux = (ε1 – δ1)x

Uy = (ε2 – δ2)y (6)
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where λ1, µ1 and λ, µ are the two pairs of Lame
constants of the inclusion and matrix materials,
respectively, and κ = 3 - 4ν, ν being Poisson’s ratio for
the matrix. The two parameters δ1 and δ2 as defined in
Roy et al1, correspond the dilatational deformations in
x- and y- directions, respectively. The stresses and
displacements in the inclusion obtained from
orthotropic formulation are compared with isotropic
formulations (i.e.,Equations (6) and (7)) and FEA. The
properties of ice given by Equation (5) are used, and the
following materials constants for a specific transversely
isotropic composite material, T300/5208, are applied
in the calculations for stress fields, as stated in Equation
(9) and Equation (35) presented in Roy et al1:

E1 = 10.3 GPa ν12 = 0.56 G12 = 3.3 GPa
E2 = 10.3 GPa ν13 = 0.16 G12 = 7.17 GPa (9)
E3 = 181 GPa ν23 = 0.16 G12 = 7.17 GPa

Table 1 shows a comparison between the formulation
reduced from the present analytical orthotropic
formulation by assuming isotropic matrix material,
and the known isotropic formulation1° for the case of
elliptic inclusion with blunt tip, as shown in Figure 1.
Table 2 presents a comparison between orthotropic
formulation, for the transversely isotropic matrix
material, as mentioned above, and FEA results for the
elliptic inclusion case with blunt tip. Figures 4 and 5
are the plots of the transverse stress sy and axial stress
sx in the elliptic ice inclusion. It can be observed that

(8)
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the present results are almost exactly the same as that
from Bhargava et al1° for the case that the matrix
material is isotropic. Excellent agreement with
numerical FEA results is also observed.

Figure 5. Comparison of axial stress σx for
transversely isotropic matrix

Figure 4. Comparison of transverse stress σy for
transversely isotropic matrix

In addition to inclusion stresses, a comparison of
predicted displacements in the inclusion is also
performed. Figures 6 and 7 are the plots of
displacements in the X- and Y- directions
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Figure 8. Comparison of transverse stress plot for
b/a = 0.03

Figure 7. Comparison of Y-displacement for
transversely isotropic matrix b/a = 0.16

respectively, i.e. Ux, Uy, along the boundaries of the
elliptic inclusion for the case b/a = 0.16. It can be
seen that the predicted displacements are in good
agreement with FEA results.

5. ELLIPSE-CRACK EQUIVALENCE FOR A
TRANSVERSELY ISOTROPIC MATRIX

Clearly, the exact solution for the Mode I stress
intensity for the case of ice inclusion within an open
crack, as depicted by Figure 2, cannot be obtained
directly because of the fact that the determination of
the actual stress distributions on the crack boundaries
is mathematically intractable. However, it is hereby
postulated that an approximate solution for the
Mode I stress intensity factor for the crack may be
obtained by assuming that the actual stress
distribution on the crack face, pξ, may be reasonably
replaced by an uniform stress distribution, σy, due to
an elliptic ice inclusion having the same length and
width as that of the original crack, as discussed in
Roy et al1. Thus, the resulting uniform normal stress,

σy, can be applied to determine the Mode I stress
intensity factor for the crack.

To verify the validity of such an analogy, some
comparisons are presented. The transverse stress in
the inclusion, σy, obtained from the analytical
solution for the elliptic notch (Figure 1), and the
transverse stress for the inclusion with a sharp tip
(Figure 2) obtained from FEA are plotted on the
same scale along the semi-major axis, as shown in

Figure 6. Comparison of X-displacement for
transversely isotropic matrix, b/a =0.16

Figures 8-12. It is observed that for the crack case,
the stress is roughly in the shape of a cosine curve
(referred to as FEA-Actual) with its mean value
(referred to as FEA-Average) close to the transverse
stress (referred to as FEA-Ellipse) predicted for an
equivalent elliptic inclusion having the same a/b
ratio. Based on these observations, the transverse
stress, σy, derived for an elliptic inclusion is
employed to evaluate the stress intensity factor for
a crack with the same a/b ratio.
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5.1 Calculation of Stress Intensity Factor for
Transverse Isotropy

The stress intensity factor for the blunt elliptic inclusion
case is calculated by using the Equation (14) for the
formulation and compared with FEA results for a
sharp crack. The numerical values are presented in
Table 3. The stresses in Column 2 in Table 3,
“Orthotropic Formulation”, are the stresses for a blunt
elliptic inclusion in a transversely isotropic matrix.

They are compared with the stresses in Column 3,
“FEA Mean”, which provides the mean value of the
transverse stress along the major axis, included in
Figures 8 through 12. Figures 13 and 14 show the
comparison graphically, with the compressive
transverse stress σy in these graphs plotted without the
negative sign. In general, good agreement is observed
between the predicted transverse stresses. The
maximum error in the predicted transverse stress is
around 14% for the case of a crack with a thick

Figure 9. Comparison of transverse stress plot for
b/a = 0.06

Figure 11. Comparison of transverse stress plot for
b/a = 0.16

Figure 10. Comparison of transverse stress plot for
b/a = 0.1

Figure 12. Comparison of Transverse Stress Plot for
b/a = 0.33
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inclusion, that is, b/a= 0.33. The maximum error in the
predicted stress intensity is around 12%, but it occurs
for the case of a crack with a thin inclusion, b/a= 0.033.
It should be noted that the current formulation provides
a conservative estimate for the stress intensity factor
for most b/a ratios.

5.2 Benchmark Results for a Crack in an
Orthotropic Lamina

For the case of an ice inclusion contained in a
delamination between adjacent zero degree laminas
within a unidirectional laminate, the matrix material
will behave as a fully orthotropic material. For
benchmarking of the orthotropic formulation with
FEA results, the material properties given in Equation
(4) and Equation (5) are used.

First, stresses and displacements resulting from
the orthotropic formulation are compared with the

Figure 14. KI vs. σσσσσy for Transversely Isotropic MatrixFigure 13. σy vs. b/a for Transversely Isotropic Matrix
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661.0 07.14- 07.14- 00.0 97.21 25.21 61.2
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results obtained from FEA using orthotropic
properties for the surrounding lamina. Table 4
shows a comparison for the axial and transverse
stresses for an elliptic inclusion, graphically
illustrated in Figures 15 and 16. Similarly, the
axial and transverse displacements along the
inclusion boundary, for the case b/a = 0.16 (a/b = 6),
are shown in Figures 17 and 18. It can be seen that
the analytical results agree well with FEA
predictions for axial stress, and the error in the
transverse stress is about 17%.

6. ELLIPSE-CRACK EQUIVALENCE FOR
AN ORTHOTROPIC MATRIX

As in the transversely isotropic case, the average
value of the transverse stress over the length of the
crack due to ice inclusion obtained from FEA is
compared with results from FEA of the elliptic
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333.0 64.073- 92.283- 90.3 25.801- 71.621- 99.31

Figure 15. Stress σx Comparison for Orthotropic Matrix Figure 16. Stress σy Comparison for Orthotropic Matrix

Figure 17. Comparison of X-Displacement for
Orthotropic Matrix, b/a = 0.16

Figure 18. Comparison of Y-Displacement for
Orthotropic Matrix, b/a = 0.16
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Figure 19. Comparison of Transverse Stress Plot for
b/a = 0.033

Figure 20. Comparison of Transverse Stress Plot for
b/a = 0.066

Figure 22. Comparison of Transverse Stress Plot for
b/a = 0.16

Figure 21. Comparison of Transverse Stress Plot for
b/a = 0.1

Figure 23. Comparison of Transverse Stress Plot for
b/a = 0.33

inclusion in an orthotropic matrix. The variation of
transverse stress σy along the semi-major axis for
the crack(referred to as FEA-Actual), the average of
σy for the crack (referred to as FEA-Average) and
transverse stress along the semi-major axis of the
equivalent ellipse (referred to as FEA-Ellipse) are
plotted in Figure 19 through Figure 23. It is seen
that the average transverse stress in the crack and
the transverse stress in the ellipse are in reasonably
good agreement. These results are tabulated in
Table 5.
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7. STRESS INTENSITY FACTOR FOR
ORTHOTROPIC MATRIX.

Results obtained for Mode I stress intensity factor,
KI, from the orthotropic formulation are tabulated
in Table 5 and are compared with FEA results for
a crack with ice inclusion in an orthotropic lamina.
The comparison with FEA results is also
graphically depicted in Figures 24 and 25. The
maximum error in the predicted stress intensity is
only 3 % for the orthotropic case for a crack with
a moderately slender ice inclusion, even though
the corresponding error in the predicted transverse
stress is 21 %. As in the case of the transversely
isotropic lamina, it should be noted that the
orthotropic formulation provides a conservative
estimate for the stress intensity factor for most b/
a ratios.

Figure 25. KI vs. σy for Orthotropic MatrixFigure 24. σy vs. b/a for Orthotropic Matrix

8. APPLICATIONS OF THE MODEL

Having benchmarked the proposed model using FEA
results for ice-filled cracks in both transversely
isotropic and orthotropic laminates, the model is
now applied in a predictive mode to study certain
interesting problems associated with the freezing of
ice in a polymer composite laminate.

8.1 Ice Formation in Transverse Matrix
Cracks

It is well known that cooling from cure temperature
to room temperature or to sub-freezing temperatures
results in residual stresses within a PMC laminate,
because of difference of the elastic properties in
adjacent plies. In order to study the detrimental effect
of ice formation within micro cracks caused by residual
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stresses in a laminate, a [0/90/0/90]s T300/5208
graphite/epoxy laminate of total thickness 6.35 cm
and the uniform thickness of each individual layer, h
= 0.7935 cm is considered, as shown in Figure 26. A
temperature change from 135 °C to 0 °C is applied to
the laminate to simulate the temperature drop from
cure to freezing. The longitudinal coefficient of thermal
expansion (CTE) of the T300/5208 composite lamina
is taken to be 0.02 × 10-6 m/°C and the thermal
expansion coefficient in the transverse direction as
22.5 × 10-6 m/°C.

A single micro-crack is introduced in the [90/90]
lamina at the center of the laminate as shown in
Figure 26 and, in the interest of tractability,
interactions between multiple matrix cracks and
delaminations is ignored. The length of the crack, 2a,
is assumed to be 0.9 times the total thickness of [90/
90] layers. In this context, Moschovidis et al2 have
shown that the interaction between two ellipsoidal
inhomogeneities imbedded in an infinite matrix
becomes negligible if the distance separating the
inclusions is greater than four times the semi-major
axis of the inclusions. Therefore, the predictions of
the proposed analytical model would remain valid
for matrix crack spacing greater than 4a, that is, for
matrix crack densities less than L/4a. The longitudinal
residual tensile stress present in the lamina would
cause the micro-crack to open. Ignoring shearing
tractions at the lamina interfaces, the crack opening

displacement (CTOD) for this case is given by Tada11:
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and h is the individual lamina thickness shown in
Figure 26. For this case, from Equation (10), the semi-
thickness of the ice inclusion b = 8.477 × 10-6 m, and
the b/a ratio for the fully open micro-crack is therefore
equal to 84.275.

It is envisioned that as the laminate cools down
from its cure temperature, moisture diffuses into
the open micro-crack. Finally, when the
temperature reaches 0° C, the moisture freezes
within the micro-crack. Assuming the material
remains linear elastic and linear superposition is
valid, the total stress intensity factor, KI, at the
crack tip consists of two additive components: (a)
KI due to the residual tensile stress in the matrix,

Figure 26. Ply lay-up for the [0/90/0/90]s T300/5208 graphite/epoxy laminate
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and (b) KI due to the expansion of moisture in the
micro-crack as it transforms to ice. The KI due to
freezing is calculated using the analytical
formulation presented earlier. The KI due to the
residual stress in the matrix is calculated using
results presented by Tada11 for a finite width plate
of thickness 2h containing a crack of length 2a,

K aF a hI = σ π ( / ) (12)

where,

F a h
a h a h a h

a h
( / )

. ( / ) . ( / ) . ( / )

/
= − + −

−
1 0 5 0 37 0 044

1

2 3

(13)

The longitudinal residual tensile stress σ1 in the 90O

layers due to a cool down from 135°C to 0°C is
obtained using a FORTRAN code based on classical
lamination theory. The stress intensity factors obtained
for this case are as given in Table 6. It can be seen that
the increase in stress intensity due to ice formation in
the micro-crack is only about 6% of the stress intensity
due to residual stress for this case. However, it should
be noted that the mitigating effect of swelling due to
moisture absorption on residual tensile stress is not
considered in this case.

From Table 6, it can be observed that the increase in
stress intensity due to the presence of ice inclusion is
approximately 6% of the stress intensity due to
residual thermal stresses in the lamina at 0 °C. It can
therefore be concluded that for the material system
considered and the assumed temperature drop, the
contribution of ice formation in the micro-cracks to
the overall stress intensity and to laminate failure
initiation is not very significant.

8.2 Analysis of Delamination in a Laminate
Due to Ice Formation

8.2.1 Local Versus Global Modeling Issues

The orthotropic formulation is employed to predict
the effect of ice formation within a delamination
along the laminate mid-plane as shown in Figure 27.
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Figure 27. Mid-Plane Delamination in a Laminate
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Because delamination is governed by local stress
fields in the vicinity of the crack tip, it is anticipated
that only local ply material properties, that is,
material properties of the plies adjacent to the
delamination, need to be input to the analytical
model. However, in order to ascertain if the crack
driving force at the tip of the delamination is in
anyway influenced by the overall laminate stiffness,
stress intensity factors for the following cases are
evaluated using the analytical model and compared
with FEA results: (a) delamination between the
adjacent [90/90] laminas in a [0/90/0/90]s laminate
and (b) delamination between the [0/0] laminas in a
[90/0/90/0]s laminate. In each case, the analytical
model predictions for KI are obtained using local ply
properties, (Table 7, Column 1), followed by
analytical model predictions for KI using global
laminate properties obtained using classical
lamination theory (CLT) (Table 7, Column 4).

To benchmark these results with FEA, a quarter
symmetry model of a t = 12.7 mm thick and L = 25 mm
wide laminate is constructed. Each lamina is modeled
for a thickness of h = 1.5875 mm. The semi major axis,
a, of crack is modeled as 1.905 mm and the semi
minor axis, b, is modeled as 0.3175 mm to give b/a =
0.166. The results shown in Table 7 indicate that the
stress intensity factor is governed primarily by the
local material properties, and that using the equivalent
stiffness calculated using CLT, could lead to erroneous
results. As can be seen from the first two columns in
Table 7, for both [0/90/0/90]s and [90/0/90/0]s
laminates, the stress intensity factor depends strongly
on the properties of the adjacent lamina. Thus, for
delamination between the [90/90] lamina in a [0/90/
0/90]s laminate, transversely isotropic properties of
the [90] lamina are input into the orthotropic
formulation. Similarly, for delamination between the
[0/0] lamina of [90/0/90/0]s, laminate orthotropic
material properties for the [0] lamina are input into
the formulation. The stress intensity factor predicted
by the model with equivalent global stiffness
calculated using CLT are much higher than the FEA
results, thereby vindicating the local approach.

8.2.2 Delamination Analysis

In general, two types of delamination are possible in
laminates, i.e., (1) Free Edge Delamination and (2)
Local or Transverse Crack Tip Delamination. The free
edge delamination is a result of stresses at the free
edge of the laminate. Transverse crack tip
delamination occurs when a transverse crack as shown
in Figure 26 impinges on the interface between two
lamina, which often results in the delamination of the
laminate. Crack initiation due to trapped water
freezing in a local (Type 2) delamination is studied,
as shown in Figure 27. The orthotropic formulation
is employed for a [0/90/0/90]s laminate for different
cases of delamination opening displacement, i.e., b/
a ratios. For each case, self similar delamination
growth, i.e., b/a is assumed to remain constant. The
delamination length, a, is increased to obtain the
critical delamination length that would correspond
to the critical energy release rate, GIC, for each selected
value of b/a. The dimensions of the individual lamina
and laminate are as shown in Figure 27. The GIC for
the material is assumed to be 125 J/m2, based on
results presented by Armanios et al12. Figure 28
shows the variation of crack driving force due to
increase in delamination length for each b/a ratio.

The equation of each b/a=constant curve is given by

G J
K
E

a
E

I y= =
′

=
′

2 2πσ
(14)

In Equation (14) σy is a constant, as it is only a function
of b/a (derived by substituting Equation (35) in
Equation (9) in Roy et al1), and are also constants
resulting in the crack driving force, G, to be a linear
function of delamination length, a. Therefore, as
shown in Figure 28, the curve for a given value of
ratio, b/a, is a straight line with a slope equal to

S
E
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′

πσ 2

(15)
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and passing through the origin as indicated by
equation (14). It should be noted that though σy is a
constant for any given value of ratio b/a, its
magnitudes will be different for different values of
ratio b/a, which accounts for the different slopes of
the curves in Figure 28. Table 8 give the critical
delamination length, ac, which corresponds to the
point of intersection of the b/a curves and the
critical strain energy release rate (Gc ) line in Figure
28, assuming no increase in resistance with
delamination growth. It is also interesting to note
that as the orthotropic formulation is independent
of the dimensions of the matrix, and is only
dependent of the inclusion dimensions (a and b),
the critical values of delamination presented in
Table 8 are valid for any dimension of the matrix for
the material chosen, as long as there are no edge
effects and adjacent delaminations influencing the
stress field in the inclusion

8.2.3 Life Prediction for Freeze-Thaw Cycling

As a demonstration of the predictive methodology, a
freeze-thaw delamination growth analysis is
performed on a [0/90/0/90]s laminate depicted in
Figure 27 and with material properties as given in
section 8.2.2. The following equations based on Paris
law are used to calculate the number of freeze-thaw
cycles, which result in complete delamination
between the [90/90] laminas.

The prediction on fatigue life can be performed by
using Paris law expressed below

N
da

C K
f

I
ma

a

i

f
=

( )∫ (16)

The law has an equivalent form where KI is replaced
by the strain energy release rate G as follows,

N
da

C G
f ma

a

i

f
=

( )∫ (17)

where, the material constants C, m  are not the same
as that in equation (16). As a demonstration of the
predictive methodology, a freeze-thaw
delamination growth analysis is performed on a [0/
90/0/90]s laminate depicted in Figure 27 and with
material properties as given in section 8.2.2. The
equation (17) is used to determine the number of
freeze-thaw cycles, which result in complete
delamination between the [90/90] laminas. The
number of cycles is calculated for a crack growth
from 1.5875 mm (i.e., initial delamination length
equal to single lamina thickness) to 25 mm (i.e.,
assumed length of the laminate). For evaluation of
the integral in Equation (17), the crack growth is
assumed to be self-similar, i.e. b/a ratio remains
constant with time during the freeze-thaw cycles.
The constant b/a ratio is taken to be equal to 0.16 for
this study, simulating a relatively slender inclusion.
The fatigue crack growth material parameters
employed in this analysis are based on results
presented by Prel et al13,
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Figure 28. Delamination Driving Force vs.
Delamination Length
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Substituting equation (14) in (17) gives,

N dN
da

C a E
f

y

ma

aN ff
= =

′( )∫∫
πσ 20 0 / (19)

After substituting for σy, C and m for the selected
material system and integrating Equation (19), the
resulting fatigue-life parameters are tabulated in
Table 9. As can be seen, 4.8923 × 109 freeze-thaw
cycles are predicted for this case to completely
delaminate the composite. However, the simple
predictive model does not account for edge effects
and potential interaction with other damage states
when the delamination approaches the free edges
of the laminate.

sharp tip, the transverse stress distribution was in
the shape of a cosine curve with its mean value close
to the transverse stress predicted for a blunt-tip
elliptic inclusion having the same b/a ratio. Stress
intensity factor, KI , obtained for various values of a/
b are in reasonable agreement with the corresponding
results from FEA analysis. Though the model under-
predicts the stress intensity factor for moderately
thick ellipse, the stress intensity factors obtained for
slender ellipses were conservative. For the material
system used, the model predicted near exact stress
intensity factor for b/a = 0.1666. A simple
methodology to predict static delamination failure
and the fatigue durability of a cross-ply laminate
subject to freeze-thaw cycling was demonstrated.
Even though the analytical model was benchmarked
using FEA results, experimental verifications of the
analytical predictions are necessary to rigorously
validate the analytical derivation.

REFERENCES

1. Roy, S., Nie, G.H., Karedla, R. and Dharani, L.,
Matrix cracking and delaminations in
orthotropic laminates subjected to freeze-thaw:
Model Development, Polymers and Polymer
Composites, 2002, 10: 327-339.

2. Moschovidis, ZA and Mura, T., Two-ellipsoidal
inhomogeneities by the equivalent inclusion
method. ASME J. Applied Mech., December
1975, 42:847-852.

3. Li, H., Zhong, W.F. and Li, G.F., Equivalent
inclusion method in elastodynamics and the
scattered field for two-ellipsoidal
inhomogeneities, Appl. Math. Mech., 1985, 6:
489-498.

4. Zhong, W.F. and Nie, G.H., An Integral Equation
of the Scattering Problem by Many
Inhomogeneities and the Scattered Effect,
Applied Mechanics, vol.2, 1989, 1003-1008.

5. Zhong, W.F. and Nie, G.H., The Scattering of SH
Waves by Numerous Inhomogeneities in an
Anisotropic Body, Acta Mechanica Solida
Sinica, 1988, 1: 81-96.

6. Wang, J. and Karihaloo, B.L., Matrix-crack
induced delamination in composite laminates
under transverse loading. Composite Structures,
1997, 38:661-6.

7. Christensen, R.M., A critical evaluation for a
class of micro-mechanics models, J Mech. Phys.
Solids, 1990, 38:379-404.

sretemarapelcycwaht-ezeerF.9elbaT

a/b 61.0

ai mm5785.1

af mm52

Nf 3298.4 × 01 9 selcyc

For the case that the delamination growth is not
self-similar, i.e., when the ratio b/a is not a constant,
the integral in Equation (19) can still be evaluated
using numerical integration method, such as,
Gaussian quadrature.

9. SUMMARY AND CONCLUSIONS

An analytical formulation to calculate the stress
intensity factor KI due to water-ice inclusion in both
transversely isotropic and orthotropic matrices was
successfully developed and verified. With the help
of FEA, it was established that stress field in the
vicinity of an elliptic inclusion was an acceptable
analytical idealization to obtain the stress intensity
for a crack with ice inclusion. In this context, it has
been shown that the interaction between two
ellipsoidal inhomogeneities imbedded in an infinite
matrix becomes negligible if the distance separating
the inclusions is greater than four times the semi-
major axis of the inclusions. Therefore, the
predictions of the proposed analytical model would
remain valid for crack spacing greater than 4a, that
is, for matrix crack densities less than L/4a. It was
observed that for the case of an inclusion with a



587Polymers & Polymer Composites, Vol. 10, No. 8, 2002

Stress Intensity Factor for an Elliptic Inclusion in Orthotropic Laminates Subjected to Freeze-thaw:
Model Verification

8. Nemat-Nasser, S. and Hori M., Micromechanics:
Overall Properties of Heterogeneous Materials,
North-Holland, 1993.

9. Kanninen, M. F. and Popelar, C. H., Advanced
Fracture Mechanics. Oxford University Press,
(1985).

10. Bhargava, R. D. and Radhakrishna, H. C., Two-
dimensional elliptic inclusions. Proc. Camb.
Phil. Soc., 59, (1963), p. 811.

11. Tada, H., Paris, P. C. and Irwin, G., R., Stress
analysis of cracks handbook. Del Research
Corporation, (1973).

12. Armanios, E. A., Sriram, P. and Badir, A. M.,
Fracture Analysis of Transverse Crack-Tip and
Free-Edge Delamination in Laminated
Composites. Composite Materials: Fatigue and
Fracture, ASTM STP 1110, (1991).

13. Prel, J., Davies, P. and Benzeggagh, M. L., Mode
I and Mode II Delamination of Thermosetting
and Thermoplastic Composites. Composite
Material: Fatigue and Fracture, ASTM STP 1012,
(1989).

ACKNOWLEDGEMENT

This research was supported through NSF Grant
CMS 0296167.



588 Polymers & Polymer Composites, Vol. 10, No. 8, 2002

Samit Roy, G.H. Nie, R. Karedla and L. Dharani




