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Failure in Highway Rock Slopes using LIDAR 

 
 
 

Abstract 
Rock falls on highways while dangerous are unpredictable.  Most rock falls are of the raveling type and 
not conducive to stability calculations, and even the failure mechanisms are not well understood.  LIDAR 
(LIght Detection And Ranging) has been shown to be able to measure the volumes of raveled rock as 
small as 1cm when repeatedly scanned over a period of 16 months.  Rock fall volumes can be correlated 
to external stimuli such as rainfall, seismic activity, and freeze thaw cycles to determine trigger for 
failure.  A modeling method for raveling rock has been proposed and demonstrated. 
 

1. Background  
Rock falls are a major geological hazard in many states with mountainous or hilly terrain.  Catastrophic 
failures of rock cuts can result in property damage, injury, and even death. Rock fall hazard assessment in 
the USA has traditionally been a reactive process.  This is because the most common form of rock fall, 
raveling, is poorly understood and difficult to predict. 

In many terrains the discontinuities are oriented in such a way that they contribute to create wedge, 
planar sliding, or toppling failures (Figure 1) which are easy to analyze.  Franklin and Senior (1997b) 
report that of  415 analyzed cases of failure in Northern Ontario, only 33% of failures involved these 
mechanisms (23% toppling, 8% planar sliding, 2% wedge sliding).  Analysis methods for these failures 
are well known, and can range from limiting equilibrium analysis to numerical modeling (Hoek and Bray, 
1981; Piteau, 1979c; Piteau, 1979d). The mapping of discontinuity orientations is a requirement, before or 
after the cut has been exposed (Piteau, 1979a; Piteau, 1979b; Piteau 1979g).  Rock determined to be loose 
with the potential for failure must be removed or restrained in some way (Piteau, 1979e).  Prescribed 
designs for remediation and/or mitigation are easy to find (Brawner, 1994; Konya and Walter, 1991; 
Piteau, 1979f; Franklin and Senior, 1997a).  In the Northern Ontario study, 65% of the failures were of 
the “raveling” type (Figure 2).  These included raveling (25%), overhang/undercutting failure (15%), ice 
jacking (14%), and rolling blocks (11%).  In other terrains, most notably flat lying sedimentary rock, such 
as is found in much of the US, the predominant failure mechanism of the raveling type is even greater.  

These raveling failures, defined as time dependent regressive displacement failures, are more 
problematic. There are no analysis techniques for prediction, and remediation designs are typically based 
on engineering judgment, balancing the risk in terms of probability of failure and consequence of failure, 
against the cost of effective remediation.  The use of empirical design and rock mass classification 
becomes important (Franklin and Maerz, 1996).  Even the mechanism of raveling is poorly understood.  
Methods of empirical classification and analysis have been developed (Maerz, 2000; Maerz et al., 2003; 
Maerz et al., 2004a; Maerz et al., 2004b; Youssef et al. 2003, Maerz et al., 2005, Youssef et al., 2007). 
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Figure 1:  Example of wedge, planar, raveling, undercutting failures along road cuts. 

 

1.1 Raveling rock falls 
Raveling failure, the most common type of rock failure, is poorly understood.  Analysis is mostly 
descriptive, and prediction of the amount is typically an empirical exercise in guessing based on extra-
polation of visual evidence.  Raveling failures are often slow and time dependent, but can also be catas-
trophic if they involve large blocks.  Large block falls are often the result of the collapse of undercut 
overhanging ledges.  Rock structure contributes to the raveling process; however it is typically weathering 
driven weakening and degradation of the intact rock that leads to the raveling, and external triggers such 
as ground vibrations, excess pore pressure, freeze-thaw or thermal cycling. 
The literature abounds with mention of raveling (Piteau, 1979a, Hoek and Bray, 1981; Walkinshaw and 
Santi, 1996; Kliche, 1999).  Rock hazard rating systems use raveling as a parameter to determine the 
durability of rock cuts (Pierson and Van Vickle, 1993; Senior, 1999; Maerz et al., 2004b).  Recent 
European research has investigated the processes and morphology of raveling, although in a qualitative 
observational way (Huisman et al., 2004, Nicholson, 2003; Kuhnel, 2002).  Krautblatter and Dikau (2007) 
provide a review of what they call “rockwall retreat” provide conceptual models and triggering factors.  
 
1.1.1 Mechanisms of raveling 
Kuhnel (2004) lists the following factors that drive rock degradation and raveling: 
 

1. Stress release (unloading, growth of discontinuities) 
2. Pressure shocks (blasting and earthquakes) 
3. Water pressure 
4. Thermal cycling 
5. Freeze-thaw 
6. Chemical weathering (oxidation/reduction, hydration/dehydration, recrystallization/resolution, 

phase reactions/transformations, weathering  rates increased by presence of water and gasses) 
7. Biogenic causes 
8. Anthropogenic (e.g. acid rain, other pollutions)  
9. Interactions of the above factors (e.g., cracks propagation, water pressure opening, cracks, tree 

roots opening them further) 
 
Kuhnel did not quantify the relative contribution of each factor but did order them in the following 
sequence: 
 

1. Physical/mechanical/thermal (stress related) factors 
2. Chemical weathering 
3. Biogenic and Anthropogenic factors 
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Clearly different rock types respond differently.  For instance quartz rich rocks are virtually immune from 
chemical weathering, whereas mafic igneous rocks are so prone to chemical attack that they rarely have a 
chance to be physically weathered.  Similarly, soluble limestones dissolve quickly, not leaving time for 
physical weathering.  Nevertheless Kuhnel provides a framework for mechanisms, even if no 
quantification is done. 
 
1.1.2 Morphology and classification of raveling 
Nicholson (2003) quantitatively describes deterioration related morphologies.  Figures 2 and 3 show 
erosional and depositional morphologies due to deterioration.  Nicholson does not quantify any of the 
processes, nor does anyone else in the literature. Nicholson (2003) presents a quantitative classification 
along axes of material size, frequency of events and velocity of events.  
 
1.1.3 Quantification of raveling/block falls 
No quantification of the raveling process has been found in the literature.  Kemeny (2005), Lee (2007), 
Kemeny and Kim (2009) have proposed modifications to the UDEC® and PFC® (distinct element) 
modeling to consider progressive failure through crack growth.  These address the issue of crack growth 
along existing cracks rather than a stochastic approach to raveling. 
 

 
Figure 2:  Erosional morphology due to deterioration (Nicholson, 2003). 
 

 
Figure 3:  Depositional morphology due to deterioration (Nicholson, 2003). 
 

1.2 The role of LIDAR 
1.2.1 What is LIDAR? 
LIDAR is an acronym for LIght Detection And Ranging.  Different types of LIDAR units can measure 
distance, speed, rotation, and even chemical composition and concentration.   

As a distance measuring device, LIDAR replaces traditional methods of laser surveying, which take 
individual measurements, and require reflective targets to measure distances and angles.  LIDAR is more 
analogous to radar, in that the scanning laser can make up to 500,000 point measurements per second, 
returning a point cloud, which can be used by sophisticated software to create a very detailed surface 
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map.  Variants of the LIDAR unit include models used from airplanes to create detailed ground surface 
maps and terrestrial models that can be operated from stationary locations to moving vehicles.  At 
Missouri S&T, we have a Leica ScanStation II, and a Leica HDS6000, both terrestrial LIDAR models 
that were used for this project.  These have a range of over one hundred meters, a sampling resolution of 
less than 1 mm, and a modeled precision of 2 mm. In our work we have been able to measure differences 
of 0.3 mm, under very controlled circumstances. 
 
1.2.2 How was LIDAR used in this study? 
The LIDAR unit was used to collect data on the raveling process used to develop a model for raveling 
slope.  It was used to do change detection on slopes, to measure with precision the initial geometries of 
the slope as an input to modeling, and monitor the changes in geometry of the cut or slope as individual 
pieces of rock ravel out of the slope.  Using multiple scans over time, the timing and sequence of the 
falling rock was analyzed.  LIDAR has been used in this manner to determine volumes of coastal erosion 
(Rosser et al, 2005, Young and Ashford, 2005), and rock slides (Oppikofer et al., 2008). 

The Scan Station II LIDAR unit is typically set up at a stationary location, facing a slope, bluff, 
structure, or topographical feature (Figure 4).  The device can automatically scan 360º horizontally and 
270º vertically.  The device will scan at a scan rate of 50,000 points per second.  The device stores a 
“point cloud” which is a list of x, y, z coordinates that describe the topography with an accuracy of up to 
2 mm (Figure 5).  For this project, “before” and “after” LIDAR point clouds will be used to map the 
raveling process over time (Figure 5). LIDAR measurements allowed us to measure and map the 
sequence and removal of blocks, even blocks as small as or smaller than 1 cm on edge.  Rock cuts were 
be measured and mapped.  Measurements were correlated to rainfall, temperature, seismic, and hydraulic 
conditions. 

 
 

 
Figure 4: Scan section of a rock face in a local 
quarry. 

 

Figure 5: Point cloud of the scan and resulting 
areas of rock loss painted in red. 
 

 

 

2. Results of a pilot study 
To demonstrate the feasibility of the proposed technique, a small 16 month study was undertaken.  Two 
small local rock cuts, one in and one near a local quarry were imaged using LIDAR, at a frequency of 
once every week or every second week.  At the same time measurements of temperature, rainfall and 
ground vibration from blasting were obtained.  Resolution of the scans was set to 3 and 8 mm, with an 
average of 6.7 million data points per scan.  The smallest rock that could be detected is 9 mm across. 
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2.1 Data processing methodology 
Software was developed to register the point clouds (with an average root mean square error of 2.5 mm) 
scanned at different times and measure the volume of the fallen rock.  All software is developed in C++, 
compiled using the GNU G++ complier, and runs on Ubuntu® Linux.  Two open-source libraries are used 
for graphic output – OpenCV for graphic output and OpenGL®  for interactive display functions. The 
processing sequence was as follows: 
 

1. Converting raw point cloud data into a single spherical surface representation (Figure 6). 
2. Filling gaps in the data (empty bins) (Figure 7). 
3. 3-D registration process of sequential scan images (Mikhail et al., 2001) (Figure 8). 
4. Vegetation and other non-rock artifact detection and removal (Figure 9). 
5. Cropping to a common horizontal and vertical domain (Figure 10). 
6. Creation of a difference surface between any two registered scans (Figure 11). 
7. Difference surface artifact removal (Figure 12). 
8. Individual lost-rock statistics and volume determination (Figure 13). 

 
 
 

 
 

 

Figure 6:  Convert spatial randomness of raw database (left) to ordered 3 mm by 3 mm bins on 
a spherical surface (right). 
 

Figure 7:  Gaps in binning due to mechanical imprecision of the LIDAR (left) are removed by interpolating 
between the two closest opposing bins (right). 
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Figure 8:  Pick points (red x’s in left image) are selected in areas where no change is seen or 
anticipated.  A 50 by 50 kernel is fitted around the “pick point” to automatically establish a 
registration point (right).  A 7 parameter shape-preserving conformal process is used to 
transform the data to a common coordinate system using between 4 and 16 registration points, 
resulting in a RMS error of less than 5mm for the 3 mm scan resolution. 
 

 
 

Figure 9: Vegetation removal (left) using a virtual articulating conical probe (right) that 
determines whether each point in the cloud is part of the rock surface or an artifact such as 
vegetation or a bird/insect/other obstruction in the scan. (Green line is scan line, red line is the 
distance to the surface, and the yellow shows the articulating cone). 
 

 
 

Figure 10:  Red lines show crop areas of the 
different scans.  The green box shows the largest 
minimum bounding rectangle common to all 
datasets. 

 
 

Figure 11: Color coded difference surface.  
Blue areas indicate lost material, red areas 
indicate gained material, and green areas 
indicate no change. (Gained areas could 
be rock that has dropped into the image 
from above or small errors below the 
measurement threshold). 
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Figure 12: Several techniques are used to differentiate real lost rock material (right) from the 
residual artifacts in the difference map (left).  These include successive dilate and erode 
functions and blob analysis.  Lost rock is identified in reverse chronological sequence to reduce 
the incidence of false positive identifications. 
 

 
 

 
 
 
 
 
 
Figure 13: Individual lost 
rock statistics (right) and 
graphical representation 
(top). 
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2.2 Verification study 
A rock fall simulation was conducted in which a known volume of clay, measured in regular shaped 
mold, was stuck to a rock outcrop (Figure 14) in 9 “blobs” to simulate 9 rock blocks.  The outcrop was 
scanned with the LIDAR scanner, before and after attachment of the simulated rock blobs.  In the first 
case the scanner was not moved between scans to simulate “perfect” registrations.  In the second case the 
scanner was removed and repositioned and normal registration techniques were applied.  Results showed 
that the accuracy of the measurement was 2% or less (Table 1). 
 

 
 

Figure 14:  Clay pressed into a mold with a volume of 3706 ml (left) and the clay attached to the 
rock outcrop simulating 9 individual blocks. 
 
Table 1: Block volume calculations from physical simulations 
 
 Actual volume of the 

nine blobs (ml) 
LIDAR measured 

volume of the nine 
blobs (ml) 

Percent error 

 
LIDAR scanner not 
repositioned 

 
3706 

 
3737 

 
+0.8364% 

 
LIDAR scanner 
repositioned 

 
3706 

 
3648 

 
-1.565% 

 

2.3 Preliminary correlations and lessons learned 

Preliminary correlations (Figure 15) between volume of blocks lost and freeze-thaw cycles, blasting 
episodes, and rainfall are somewhat tentative at this point:   
 

1. In both sites significant episodes of volume loss occurred continually during the winter months 
when freeze-thaw cycles occurred.  Significantly less volume loss occurred during most of the 
non-winter months. 

2. A single precipitation event (between days 24 and 45 in the winter time frame), resulted in large 
volume loss in both sites. 

3. A single precipitation event (between days 468 and 475 in the non-winter time frame), resulted in 
large volume loss in both sites. 

4. Not all precipitation events resulted in volume loss. 
5. There was no obvious correlation between volume loss and blasting parameters such as peak 

particle velocity 
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6. Cumulative rock loss was similar in both sites over the duration of the project; incremental rock 
loss was significantly different. 

7. Some episodes of volume loss were seemingly uncorrelated to any of the measured stimuli. 
 
Results of the analysis have already revealed several things that will be useful in developing a raveling 
model.  When viewing the full suite of images for both sites (a few of which are shown in Figure 13) the 
following was observed: 
 
 

 

Figure 15:   Results of scanning over 475 days.  Left: Site 1; right: Site 2.  Light blue zones 
indicate winter seasons; brown dotted lines indicate peak rainfall episodes. 
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The raveling sequence was progressive, with significantly higher rates of raveling in the winter season 
(when the diurnal temperature cycle typically crosses back and forth over the freezing mark (frost 
wedging). 

1. Raveling rates in some (weaker) layers of rock were higher than in other layers of rock, typically 
strata-bound.  In addition raveling rates were found to be higher under obvious overhangs. 

2. Raveling was progressive within a small area.  Often an identifiable block or cluster, rather than 
fall down in a single episode and break on impact below, would ravel a little bit at a time (Figure 
16).   

3. There may be a threshold of rainfall to initiate acceleration of rock fall 
4. There may be an interaction between rainfall and freeze thaw cycles. 

 

 

Figure 16:  Progressive raveling loss (left).  Yellow, 7/15/2011, brown 7/26/2011, red 8/02/2011. 
Right: Close up of a small area. 
 

3.  Preliminary modeling studies using PFC 

3.1 What is PFC? 
Particle fluid code (PFC and PFC3D) is a software package using discrete/distinct element methods 
(DEM) to model and analyze the particle interactions within a scientific or engineering system. In DEM, 
the interaction of the particles is treated as a dynamic process with states of equilibrium developing 
whenever the internal forces balance.  The contact forces and displacements of a stressed assembly of 
particles are found by tracing the movements of the individual particles (Cundall and Strack, 1979; 
Cundall, 1988; Hart et al. 1988; HCItasca, 2006; Cundall and Potyondy, 2001).  Crystalline rock behaves 
like a cemented granular material of complex-shaped grain in which both the grains and the cement are 
deformable and may break.  The fundamental particle is circular or spherical, but the complex grains and 
blocks are produced by bonding particles.  The damage occurs by bond breakages so that the material 
evolves from solid to granular.  Therefore, the system exhibits a rich set of emergent behaviors similar to 
crystalline rock. 

3.1 Results of a pilot study 
The basic particle used in PFC is the ball with unit thickness. Since the rocks are in various shapes, the 
balls were bonded through contact and parallel bonds to represent the rock masses. An original rock slope 
was created with the balls ranged from 0.05 m to 0.10 m in radius. The initial void ratio of the slope was 
set to 0.15. And the balls were then generated one by one until the void ratio reached 0.15 within the 
polygonal area, A’B’C’E’D, which was enlarged from the original slope area, ABCED. The walls, A’B’, 
C’E’, and E’B’, were then moved toward the positions of ABCE to compact the balls into the prescribed 
slope zone, ABCED. 
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The material properties used in the model were estimated. The contact bonds were installed to make the 
slope stand vertically. Once the magnitude of the tensile normal or shear contact force exceeds the 
respective strength, the bond breaks. After the material properties were given, a number of calculation 
steps were performed to compute the movement of the balls as they approached a mechanical equilibrium 
state, which means that the mean unbalanced force approached to a very small value, based upon the 
prescribed material properties. After the sufficient calculation cycles, the original rock slope was 
successfully created, as shown in Figure 17.  

Near surface clusters are weakened by reducing bonding strengths as a trigger for raveling (Figure 
18). (Contact bond s also vary randomly within the slope, and the weakened sections.)  Time stepping 
results in failures that appear very realistic, but have not yet been compared to LIDAR measurements. 
 
 

 
 

 

 

Figure 17:  Model configuration (left), and intact rock slope (right). 
 
 

 
Figure 18:  Modified slope with clusters of weaker mechanical properties (left) and rock fall after 
2070 time steps (right). 
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4.  Conclusions 
The results of this research have proven the concept of using LIDAR to quantify time dependent raveling 
of and to correlate to external stimuli such as rainfall, temperature cycling, and seismic activity.  
Modeling with the Partical Flow Code (2D) shows that we can model the raveling mechanism. 
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