Adding Faculty in the Areas of Transportation – Engineering Management

by

Brian Smith
Disclaimer

The contents of this report reflect the views of the author(s), who are responsible for the facts and the accuracy of information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program and the Center for Transportation Infrastructure and Safety NUTC program at the Missouri University of Science and Technology, in the interest of information exchange. The U.S. Government and Center for Transportation Infrastructure and Safety assumes no liability for the contents or use thereof.
Technical Report Documentation Page

<table>
<thead>
<tr>
<th>1. Report No.</th>
<th>NUTC R323</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient's Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>Adding Faculty in the Areas of Transportation – Engineering Management</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>July 2014</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td></td>
</tr>
<tr>
<td>7. Author/s</td>
<td>Brian Smith</td>
</tr>
<tr>
<td>8. Performing Organization Report No.</td>
<td>Project #00041009</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Center for Transportation Infrastructure and Safety/NUTC program Missouri University of Science and Technology 220 Engineering Research Lab Rolla, MO 65409</td>
</tr>
<tr>
<td>10. Work Unit No. (TRAIS)</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>DTRT06-G-0014</td>
</tr>
<tr>
<td>12. Sponsoring Organization Name and Address</td>
<td>U.S. Department of Transportation Research and Innovative Technology Administration 1200 New Jersey Avenue, SE Washington, DC 20590</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Final</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
</tr>
</tbody>
</table>
| 16. Abstract | This funding enabled the project entitled, “USING HISTORICAL CRASH DATA AS PART OF TRAFFIC WORK ZONE SAFETY PLANNING AND PROJECT MANAGEMENT STRATEGIES” to address the following:
- Evaluate current organizational strategies with respect to work zone management
- Identify factors that improve work zone safety for both work zone personnel and general public.
- Statistical Analysis of Historical Crash Data |
| 17. Key Words | Historical Crash Data, work zone management, work zone safety |
| 18. Distribution Statement | No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161. |
| 19. Security Classification (of this report) | unclassified |
| 20. Security Classification (of this page) | unclassified |
| 21. No. Of Pages | 18 |
| 22. Price | |

Form DOT F 1700.7 (8-72)
USING HISTORICAL CRASH DATA AS PART OF TRAFFIC WORK ZONE SAFETY PLANNING AND PROJECT MANAGEMENT STRATEGIES

BY
BRIAN SMITH, PH.D.
Assistant Professor Of Engineering Management And Systems Engineering
Missouri University Of Science & Technology
Project Introduction

- Evaluates current organizational strategies with respect to work zone management
- Identifies factors that improve work zone safety for both work zone personnel and general public.
- Statistical Analysis of Historical Crash Data
Project Task Presented

• Hazard and risk analysis using historical data
 – Analysis of crash records from 2009 - 2011
 – Descriptive statistics and ANOVA

• Integrated with other tasks to create organizational management strategy for MoDOT and other transportation management agencies
Work Zone Safety in Missouri

• From 2009 to 2011
 – 40 work zone crashes resulting in fatalities
 – 239 work zone crashes resulting in disabling injuries
Greatest Contributing Factors to Work Zone Crashes Involving Fatalities and Serious Injuries in Missouri

- Run-Off-Road
- Horizontal Curves
- Intersection
- Tree Collisions
- Head-On

Percent

Fatalities
Serious Injuries
Driver Characteristics of Work Zone Crashes Involving Fatalities and Serious Injuries in Missouri

Fatalities Serious Injuries

Percent

Unrestrained Occupants
Distracted Drivers Involved
Young Drivers Involved (15-20)
Substance-Impaired Drivers
Unlicensed, Revoked, or...
Lighting Conditions of Work Zone Crashes in Missouri

- **Percent**
 - Daylight
 - DarkLt. On
 - DarkLt. Off
 - DarkNo Lts.
 - Indet.

- **Crashes**
 - Fatal
 - Disabling Injury
 - Minor Injury
 - Property Damage Only
 - Severe Crashes
Type of Work Zone Crashes in Missouri

- Fatal
- Disabling Injury
- Minor Injury
- Property Damage Only

Percent

Collision Inv. Animal | Collision Inv. Pedalcyle | Collision Inv. Fixed Object | Collision Inv. Other Object | Collision Inv. Pedestrian | Collision Inv. Motor Vehicle in... | Collision Inv. MV on Other Roadway | Collision Inv. Parked MV | Overturning | Other Non-Collision
Type of Collisions in Work Zone Crashes in Missouri

- Fatal
- Disabling Injury
- Minor Injury
- Property Damage Only

Bar chart showing the frequency of different types of collisions in work zone crashes in Missouri.
Circumstance Leading to Work Zone Crashes in Missouri

- Fatal
- Disabling Injury
- Minor Injury
- Property Damage Only
Population Area of Work Zone Crashes in Missouri

Severity

- Fatal
- Disabling Injury
- Minor Injury
- PDO

Urbanized
Urban
Rural
Vehicle Speed in Work Zone Crashes in Missouri

- Fatal
- Disabling Injury
- Minor Injury
- Property Damage Only

Chart showing the frequency of vehicle speed in work zone crashes in Missouri, categorized by severity of injury and property damage.
Next Steps

• What strategies can we suggest to reduce work zone crashes?
• Focus on the characteristics of the work zones
• Regression analysis to determine significant factors for crash type
 – Fatality
 – Serious injury
 – Minor injury
 – Property damage only
Initial ANOVA

- Work zone characteristics coded as independent variables

- On or Off Road
- Road Alignment (straight or not)
- Road profile (level or not)
- Light Condition (daylight or other)
- Weather Condition (clear or other)

- Road condition (dry or other)
- Traffic Condition (level of congestion)
- Vision Obscured (level of obscurity)
- Accident Type
- Road Surface
Conclusions

• It is possible to determine causal relationships between crash types and crash severity in work zones
• These causal relationships can be used to develop work zone management strategies designed to mitigate driver behaviors
• These findings can be used as criteria for future MoDOT tracker measures and project selection