BRIDGE RESPONSE TO
NEAR-FIELD GROUND MOTIONS

Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy, Ph.D.
*Associate Professor of Civil Engineering
Department of Civil, Architecture and Environmental Engineering
University of Missouri-Rolla

gchen@umr.edu

Geotechnical and Bridge Seismic Design Workshop
New Madrid Seismic Zone Experience
October 28-29, 2004

TURAL HAZARDS
MITIGATION

Bri. Resp. - 1

UNIVERSITY OF MISSOUREROLLE

Participants

Genda Chen, Ph.D., P.E. (Team Leader)
Mostafa El-Engebawy, Ph.D.
Ronaldo Luna, Ph.D., P.E.
Richard Stephenson, Ph.D., P.E.
Wei Zheng, Ph.D. Graduate Student
Wenxig Liu, Ph.D. Graduate Student

TURAL HAZARDS
MITIGATION

Bri. Resp.- 2




Outline of Presentation

m Objectives

m Description of Bridge Systems

® Foundation Model and Bridge Model

m Dynamic Characteristics of Selected Bridges
m Discussion of Results

m Influence of Rupture Directivity
m Influence of Vertical Acceleration

m Influence of Liquefaction
m Comparison with Far-Field Ground Motions
m Concluding Remarks
m Recommendations for including Near-Field Effects in

bway Bridge Design

plapluls—gls

(e

TURAL HAZARDS
MITIGATION
INSTITUTE
Dyt S — o,

wlﬂ i

Bri. Resp. - 3

UNIVERSITY OF MISSOUREROLLE

Objectives

mTo evaluate the response of a multi-span simply
supported bridge (I.472) and a multi-span continuous
bridge (A1466) to near-field ground motions from
tuture earthquake scenarios in the NMSZ

mTo compare the bridge response subjected to near-field
ground motions simulated using the composite-source
model with that of far-field motions of the point-
source model

mTo recommend a simple method for including near-

tield effects in highway bridge design

TURAL HAZARDS
MITIGATION
INSTITUTE

Al g Bri. Resp.- 4




) it~

Description of 1.472 Bridge

m [ocated on interstate highway 155, Pemiscot County
m Multi-span simply supported (MSSS) bridge — 5 spans
Designed according to the 1949 AASHO specifications
without seismic considerations
57° skew
Laterally-restrained steel plate girders
TYPE “C” fixed and expansion steel bearings

Supported by deep pile foundations
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Description of 1.472 Bridge
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Description of A1466 Bridge

m [ocated on interstate highway 155, Pemiscot County
® Multi-span continuous bridge — 4 spans

® Designed according to the 1949 AASHO specifications
without seismic considerations

= 10° skew
m [aterally-restrained steel plate girders
= TYPE “D” fixed and expansion steel bearings

m Supported by deep pile foundations
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Description of A1466 Bridge
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Foundation Model
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Comp. stress (MPa)

Bridge Model

m [nitial stiffness of all RC elements to account for
concrete cracking, confinement, reinforcement yielding,
and expected level of axial forces

® Nonlinear elements to account fot:

w Plastic ones at the top and bottom: of columns
w TYPE “C” and “D” expansion bearings
w Pounding
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Bridge Model

Stress-Strain Relations

~ — Unconfined concrete
— Confined concrete
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Bridge Model

Moment-Curvature Analysis
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Dynamic Characteristics
L.472 Bridge — Fundamental mode of vibration
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Dynamic Characteristics
L472 Bridge — Second mode of vibration
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Dynamic Characteristics

A1466 Bridge — Fundamental mode of vibration

T, =1.89 sec
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Dynamic Characteristics
A1466 Bridge — Second mode of vibration

T, = 0.43 sec
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Discussion of Results
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Influence of Rupture Directivity (L472)
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Influence of Rupture Directivity (L472)
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Influence of Rupture Directivity (L472)

In-plane
curvature ductility
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Influence of Vertical Acceleration (1.472)
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Influence of Liquefaction (A1466)
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Influence of Liquefaction (A1466)
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Influence of Liquefaction (A1466)
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Comparison with Far-Field Motions
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Comparison with Far-Field Motions

curvature ductility

Motions applied along the transverse axis of the bridge
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Recommendations for
including Near-Field Effects
in Highway Bridge Design
Based on Abrahamson’s model (2000) and
Somerville et al. (1997)
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Directivity model

Scale factor for the average horizontal component AvH
(after Abrahamson, 2000)

In[Dir(X, 6, T)] = C1(T) + 1.88 C2(T) XCos® XCos0 = 0.4
In[Dit(X, 6, T)] = CL(T) + 0.75 C2(T) XCos8 > 0.4

Difference between FN and FP components of motion
(after Somerville et al., 1997)

In(FN/AvH) = Cos(28) [C3(T) + C4(T) In(trp+1) + C5(My-6)] 0 < 45°
In(FN/AvH) = 0 0 = 45°
In(FP/AvH) = -In(FN/AvH)
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Upper bound of Directivity Conditions
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Upper bound of Directivity Conditions
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Average Directivity Conditions
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Concluding Remarks

m The curvature ductility ratio of columns increase significantly
with the moment magnitude. Forward rupture directivity and
liquefaction effects are the dominant reasons for the high ratios

m The vertical acceleration increases the compressive forces in the
columns under the maximum considered earthquake. They are
remarkably reduced with lower moment magnitudes

m Liquefaction yields large displacements in the fault-normal
direction and permanent offset of the soil near the top of the
embankment that develop extreme large deformations in the
plane of the bridge bents leading to large in-plane curvature

ductility ratios of the columns
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Recommendations

m A site-specific rock and ground motion simulations are
recommended for highway bridges within 10 km from active
faults in the NMSZ. The resulting rock motions should include
forward rupture directivity while fling step is not likely to occur

in future earthquake events

m For highway bridges located beyond 10 km, a simple
methodology is recommended for considering near-field effects
in their design response spectra based on the average directivity
conditions at the site and the directivity models of Abrahamson
(2000) and Somerville et al. (1997)
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