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ObjectivesObjectives

To evaluate the response of a multiTo evaluate the response of a multi--span simply span simply 
supported bridge (L472) and a multisupported bridge (L472) and a multi--span continuous span continuous 
bridge (A1466) to nearbridge (A1466) to near--field ground motions from field ground motions from 
future earthquake scenarios in the NMSZfuture earthquake scenarios in the NMSZ
To compare the bridge response subjected to nearTo compare the bridge response subjected to near--field field 
ground motions simulated using the compositeground motions simulated using the composite--source source 
model with that of farmodel with that of far--field motions of the pointfield motions of the point--
source modelsource model
To To recommend a simple method for including nearrecommend a simple method for including near--
field effects in highway bridge designfield effects in highway bridge design
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Description of L472 BridgeDescription of L472 Bridge

Located on interstate highway I55, Pemiscot CountyLocated on interstate highway I55, Pemiscot County
MultiMulti--span simply supported (MSSS) bridge span simply supported (MSSS) bridge –– 5 spans5 spans
Designed according to the 1949 AASHO specifications Designed according to the 1949 AASHO specifications 
without seismic considerationswithout seismic considerations
5757oo skewskew
LaterallyLaterally--restrained steel plate girders restrained steel plate girders 
TYPE TYPE ““CC”” fixed and expansion steel bearingsfixed and expansion steel bearings
Supported by deep pile foundationsSupported by deep pile foundations
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Description of L472 BridgeDescription of L472 Bridge
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Description of L472 BridgeDescription of L472 Bridge
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Description of A1466 BridgeDescription of A1466 Bridge

Located on interstate highway I55, Pemiscot CountyLocated on interstate highway I55, Pemiscot County
MultiMulti--span continuous bridge span continuous bridge –– 4 spans4 spans
Designed according to the 1949 AASHO specifications Designed according to the 1949 AASHO specifications 
without seismic considerationswithout seismic considerations
1010oo skewskew
LaterallyLaterally--restrained steel plate girders restrained steel plate girders 
TYPE TYPE ““DD”” fixed and expansion steel bearingsfixed and expansion steel bearings
Supported by deep pile foundationsSupported by deep pile foundations
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Description of A1466 BridgeDescription of A1466 Bridge
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Bridge ModelBridge Model

Initial stiffness of all RC elements to account for            Initial stiffness of all RC elements to account for            
concrete cracking, confinement, reinforcement yielding, concrete cracking, confinement, reinforcement yielding, 
and expected level of axial forcesand expected level of axial forces

Nonlinear elements to account for:Nonlinear elements to account for:
Plastic zones at the top and bottom of columnsPlastic zones at the top and bottom of columns
TYPE TYPE ““CC”” and and ““DD”” expansion bearings expansion bearings 
PoundingPounding
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Bridge ModelBridge Model
StressStress--Strain RelationsStrain Relations
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L472 Bridge ColumnsL472 Bridge Columns A1466 Bridge ColumnsA1466 Bridge Columns
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Dynamic Characteristics Dynamic Characteristics 
L472 Bridge L472 Bridge –– Fundamental mode of vibrationFundamental mode of vibration

TToo = 0.70 sec= 0.70 sec
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Dynamic Characteristics Dynamic Characteristics 
L472 Bridge L472 Bridge –– Second mode of vibrationSecond mode of vibration

TToo = 0.55 sec= 0.55 sec
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Dynamic Characteristics Dynamic Characteristics 
A1466 Bridge A1466 Bridge –– Fundamental mode of vibrationFundamental mode of vibration

TToo = 1.89 sec= 1.89 sec



9

17Bri. Resp. -

Dynamic Characteristics Dynamic Characteristics 
A1466 Bridge A1466 Bridge –– Second mode of vibrationSecond mode of vibration

TToo = 0.43 sec= 0.43 sec
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Discussion of ResultsDiscussion of Results
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Influence of Rupture Directivity (L472)Influence of Rupture Directivity (L472)
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Influence of Rupture Directivity (L472)Influence of Rupture Directivity (L472)
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Influence of Rupture Directivity (L472)Influence of Rupture Directivity (L472)
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Influence of Rupture Directivity (L472)Influence of Rupture Directivity (L472)
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Influence of Rupture Directivity (L472)Influence of Rupture Directivity (L472)
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Influence of Vertical Acceleration (L472)Influence of Vertical Acceleration (L472)
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Influence of Vertical Acceleration (L472)Influence of Vertical Acceleration (L472)
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Influence of Liquefaction (A1466)Influence of Liquefaction (A1466)
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Influence of Liquefaction (A1466)Influence of Liquefaction (A1466)
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Influence of Liquefaction (A1466)Influence of Liquefaction (A1466)
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Influence of Liquefaction (A1466)Influence of Liquefaction (A1466)
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Comparison with FarComparison with Far--Field MotionsField Motions

Rock motionsRock motions Ground motionsGround motions

0

1

2

3

4

5

0 1 2 3 4 5
Period (sec)

Sp
ec

tra
l a

cc
el

er
at

io
n 

(g
)

 Fault-parallel
 Fault-normal
 Point-source

0

1

2

3

4

5

0 1 2 3 4 5
Period (sec)

Sp
ec

tra
l a

cc
el

er
at

io
n 

(g
)

 Fault-parallel
 Fault-normal
 Point-source

MMW W 7.5 7.5 –– L472L472



16

31Bri. Resp. -

Comparison with FarComparison with Far--Field MotionsField Motions

Motions applied along the Motions applied along the longitudinal axislongitudinal axis of the bridgeof the bridge
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Recommendations for Recommendations for 
including Nearincluding Near--Field Effects Field Effects 
in Highway Bridge Designin Highway Bridge Design

Based on AbrahamsonBased on Abrahamson’’s model (2000) and s model (2000) and 
Somerville et al. (1997) Somerville et al. (1997) 
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Directivity modelDirectivity model

STEP ISTEP I
Scale factor for the average horizontal component AvH Scale factor for the average horizontal component AvH 
(after Abrahamson, 2000)(after Abrahamson, 2000)

ln[Dir(X, ln[Dir(X, θθ, T)] = C1(T) + 1.88 C2(T) XCos, T)] = C1(T) + 1.88 C2(T) XCosθθ XCosXCosθθ ≤≤ 0.40.4
ln[Dir(X, ln[Dir(X, θθ, T)] = C1(T) + 0.75 C2(T)                 XCos, T)] = C1(T) + 0.75 C2(T)                 XCosθθ > 0.4> 0.4

STEP IISTEP II
Difference between FN and FP components of motion Difference between FN and FP components of motion 
(after Somerville et al., 1997) (after Somerville et al., 1997) 

ln(FN/AvH) = Cos(2ln(FN/AvH) = Cos(2θθ) [C3(T) + C4(T) ln(r) [C3(T) + C4(T) ln(rruprup+1) + C5(M+1) + C5(MWW--6)]     6)]     θθ < 45< 45°°
ln(FN/AvH) = 0                                                  ln(FN/AvH) = 0                                                  θθ ≥≥ 4545°°
ln(FP/AvH) = ln(FP/AvH) = --ln(FN/AvH) ln(FN/AvH) 
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Upper bound of Directivity ConditionsUpper bound of Directivity Conditions

Assuming XCosAssuming XCosθθ=0.40 then =0.40 then θθ=4.4=4.4°° for for L472 bridge (3.7 km from fault)L472 bridge (3.7 km from fault)
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Upper bound of Directivity ConditionsUpper bound of Directivity Conditions

Assuming XCosAssuming XCosθθ=0.40 then =0.40 then θθ=12.5=12.5°° for for A1466 bridge (10.9 km from fault)A1466 bridge (10.9 km from fault)
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Average Directivity ConditionsAverage Directivity Conditions

Assuming the epicenter at the middle of the fault then XCosAssuming the epicenter at the middle of the fault then XCosθθ=0.24 and =0.24 and 
θθ=19.5=19.5°° for for A1466 bridge (10.9 km from fault)A1466 bridge (10.9 km from fault)
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Concluding RemarksConcluding Remarks

The curvature ductility ratio of columns increase significantly The curvature ductility ratio of columns increase significantly 
with the moment magnitude. Forward rupture directivity and with the moment magnitude. Forward rupture directivity and 
liquefaction effects are the dominant reasons for the high ratioliquefaction effects are the dominant reasons for the high ratioss

The vertical acceleration increases the compressive forces in thThe vertical acceleration increases the compressive forces in the e 
columns under the maximum considered earthquake. They are columns under the maximum considered earthquake. They are 
remarkably reduced with lower moment magnitudesremarkably reduced with lower moment magnitudes

Liquefaction yields large displacements in the faultLiquefaction yields large displacements in the fault--normal normal 
direction and permanent offset of the soil near the top of the direction and permanent offset of the soil near the top of the 
embankment that develop extreme large deformations in the embankment that develop extreme large deformations in the 
plane of the bridge bents leading to large inplane of the bridge bents leading to large in--plane curvature plane curvature 
ductility ratios of the columnsductility ratios of the columns
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RecommendationsRecommendations

A siteA site--specific rock and ground motion simulations are specific rock and ground motion simulations are 
recommended for highway bridges within 10 km from active recommended for highway bridges within 10 km from active 
faults in the NMSZ. The resulting rock motions should include faults in the NMSZ. The resulting rock motions should include 
forward rupture directivity while fling step is not likely to ocforward rupture directivity while fling step is not likely to occur cur 
in future earthquake eventsin future earthquake events

For highway bridges located beyond 10 km, a simple For highway bridges located beyond 10 km, a simple 
methodology is recommended for considering nearmethodology is recommended for considering near--field effects field effects 
in their design response spectra based on the average directivitin their design response spectra based on the average directivity y 
conditions at the site and the directivity models of Abrahamson conditions at the site and the directivity models of Abrahamson 
(2000) and Somerville et al. (1997)(2000) and Somerville et al. (1997)


