Recommended LRFD Guidelines for the Seismic Design of Highway Bridges

W. Phillip Yen, PhD, PE
Office of Infrastructure, R&D FHWA

&

Lee Marsh
BERGER/ABAM Engineers

Cape Girardeau, MO Oct. 28-29, 2004

Recommended LRFD Guidelines for the Seismic Design of Highway Bridges

For: AASHTO LRFD Bridge Design Specifications

(Load and Resistance Factor Design)

Sponsors:

- National Cooperative Highway Research Program (NCHRP) NCHRP 12-49
- Federal Highway Administration (FHWA)

Prepared by:

- ATC/MCEER Joint Venture
- MCEER Highway Project

NCHRP 12-49 Project Team

Ian Friedland, FHWA Chris Rojahn, ATC Ron Mayes, SGH

Don Anderson, CH2M Hill Lee Marsh, BERGER/ABAM Michel Bruneau, U Buffalo Andy Nowak, U Michigan Greg Fenves, UC Berkeley Rick Nutt, consultant John Kulicki, Modjeski & Masters

John Mander, U Buffalo Maury Power, Geomatrix Geoff Martin, USC Andrei Reinhorn, U Buffalo

Others Involved

NCHRP Panel Chair Harry Capers, NJDOT

NCHRP Panel and AASHTO T-3 Richard Land, Caltrans

NCHRP Panel and FHWA Liaison, Phillip Yen, FHWA

ATC Project Engineering Panel Chair, Ian Buckle, Univ Nevada Reno

Where The Process Stands

- ◆Provisions for LRFD spec developed
- ◆Stand-alone guidelines developed
- ◆Trial designs / limited use as resource
- Barriers to AASHTO adoption:
 - Number of bridges in higher zones too large
 - Return period (2500 years) too long
 - Guidelines too complex
- ◆Next step?

Key Concepts

- National hazard maps, site factors, spectra
- Performance objectives and design earthquakes
- Emphasis on capacity design principles
 - Selected yielding / damage sites
 - Essentially elastic response elsewhere
- ◆ Seismic Design and Analysis Procedures (SDAP)
- Improved foundation, abutment and liquefaction design procedures

Design Earthquakes

◆ Rare Event

- 3 % probability of exceedance (PE) in 75 years (2500-year return period)
- Deterministically capped near active faults
- ◆ Frequent Event
 - 50 % PE in 75 years (100-year return period)
 - Similar to flood and associated performance objectives
- Consistent with retrofit definitions
 - Probability of exceedance and not return period

Performance Objectives

		Performance Objective		
Probability of Exceedence		Life Safety	Operational	
Rare EQ 3%/75yr	SL D	Significant disruption Significant	Immediate Minimal	
Freq EQ 50%/75yr	SL D	Immediate Minimal	Immediate None	

SL = Service Level

D = Damage

Logic Behind the Guidelines

- ◆ Seismic hazard is function of mapped acceleration and soil
 - 0.2-second spectral acceleration (S_s)
 - 1-second spectral acceleration (S₁)
 - Site coefficients (F_a and F_v)
- ◆Increasing rigor in the provisions with hazard
 - Seismic Analysis and Design Procedures (SDAP)
 - Seismic Detailing Requirements (SDR)

Seismic Hazard Levels

Seismic Hazard Level	Value of F _v S ₁ (1-second)	Value of F _a S _s (0.2 –second)	
I	F _v S ₁ ≤0.15	F _a S _s ≤0.15	
II	0.15 <f<sub>vS₁≤0.25</f<sub>	0.15 <f<sub>aS_s≤0.35</f<sub>	
III	0.25 <f<sub>vS₁≤0.40</f<sub>	0.35 <f<sub>aS_s≤0.60</f<sub>	
IV	0.40 <f<sub>vS₁</f<sub>	0.60 <f<sub>aS_s</f<sub>	

Design Options

Seismic Design and Analysis Procedures (SDAP) and Seismic Design Requirements (SDR)

		\ /		
Seismic Hazard	Life S	Safety	Operational	
Level	SDAP	SDR	SDAP	SDR
	A1	1	A2	2
II	A2	2	C/D/E	3
III	B/C/D/E	3	C/D/E	5
IV	C/D/E	4	C/D/E	6

"No Seismic Analysis" SDAP B

- 'Regular' bridges in lower seismic hazard areas
- Bridge does not require seismic demand analysis
- Capacity design procedures used for detailing columns and connections
- ◆ No seismic design requirements for abutments

Capacity Spectrum SDAP C

- Conceptually similar to Caltrans' displacement design method
- ◆ May be used for 'very regular' structures
- Period of vibration does not need to be calculated
- Designer sees explicit trade-offs between design forces and displacements

Elastic Response Spectrum SDAP D

- Same as current code, uses either the uniform load or multi-mode method of demand analysis.
- ◆ 'R-Factor' design force approach, similar to current code.
- Requires capacity design approach for superstructure, column shear, connections, abutments and foundations.

"Pushover" Analysis - SDAP E

- ◆ Perform multi-mode analysis, use 50% higher R-Factor for initial design, then check plastic rotations and displacements with pushover.
- Quantifies expected deformation demands in columns and foundations
- ◆ Highest R-Factors for column design
- ◆ Required for limited ductility systems so that actual demands on the elements are known.

Capacity Design Principles

- Include formal identification of earthquake resisting system
- ◆ Limit yielding/damage to preferred elements (e.g. columns – above ground)
- ◆ Reduce capacity if yielding not confined to preferred elements (e.g. drilled shafts - below ground)
- Increase capacity if pushover assessment used

Earthquake Resisting Systems (ERS) and Elements (ERE)

Three categories:

- (1) Permissible (Preferred)
- (2) Permissible with owner's permission
- (3) Not recommended

Foundations and Abutments

- ◆ Guidance for development of soil springs
- ◆ Guidance for assessment of performance
- Recognition of the beneficial contribution of abutment resistance
- ◆ Soil deformation effects considered in terms of structural and operational implications
- ◆ Design and detailing for liquefaction effects

Liquefaction Assessment

- State-of-the-art procedures for estimating liquefaction potential
- Quantification of liquefaction effects
 - lateral flow or spreading of approach fills
 - settlements of liquefied soils
- Use of ground improvement and pile resistance to limit soil movement
- ◆ Acceptance of plastic hinging in piles

Ground Movement vs. Structure Resistance Mechanisms 400k 420k 6.-100. 6.-100.

Parameter Study, Trial Designs and Design Examples

- ◆ 2400 simplified substructure designs
- ◆ 19 trial designs by state DOTs
- ◆ 2 design examples
- ◆ Broad, nationwide data sets included
- ◆ Costs similar to or only moderately higher (+/- 10%) than those by current provisions

Conclusions

- ◆ Guidelines include many of the current "best practices" (a number of which were developed for special bridges)
- ◆ Design provisions are nationally consistent
- ◆ Designs produced have reasonable costs
- Guidelines provide reasonable platform for seismic design specifications

Thank You