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Objectives

mTo provide rock motion time histories at three bridge
sites within the NMSZ. for various combinations of
moment magnitude and fault mechanism

m'To evaluate near-field characteristics in the NMSZ.

mTo compare the spectra of the simulated motions with

those of the AASHTO and the NCHRP 12-49 project

m'To compare the results of the composite-source
method with those of the finite-fault and the point-
source models
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Overview of Study Area

Major Pipelines and Bridges Near the
MNew Madrid Seismic Zone
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Characteristics of Near-Field Motions

m Forward Directivity: rupture towards the site and is
characterized by a two-sided velocity pulse(s) in the fault-

normal direction

m Fling Step: characterized by one-sided velocity pulse in
the same direction as the slip on the fault
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1992 Landers earthquake in Southern California
(Strike-Slip Earthquake)
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1992 Landers earthquake - Lucerne Records

Fault-normal: double-sided velocity pulse; small permanent displacensent
Fault-parallel: single-sided velocity pulse; large permanent displacements
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Effects of Forward Rupture Directivity
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Parameters of Forward Rupture Directivity

after Somerville et al. (1997)
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Generation of Synthetic Near-Field
Ground Motions in the NMSZ

& Key Parameters

Bridge

* Soil depth
* Soil linear/nonlinear propetties

* Fault mechanism (strike, dip & r - y )
* Shear wave velocity & damping

* Rupture area / Moment Mag

* Depth to top of fault

* Hypocentet location \\\»\-‘\“c‘
\

* Rupture velocity

* Velocity and density profile of the earth crust
Information on geometrical sp i
High slip zones energy absorption, reflection, 1
scattering through the use of analyticz

Hypocenter function r
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Seismic Source Parameters
& uncertainties

Rupture Area
5= 22% (26%)
5 75 the standard deviation for strike-slip (reverse) faults
Wells & Coppersmith (1994)

Best-estimate )

g Best-estimate ruptute area
mechanism

Southwestern segment

(strike-slip fault)

Reelfoot fault
reverse fault)
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Seismic Source Parameters
& uncertainties

Depth to top of the fault

Rake angle of slip on fault
150, or-150 °
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Wave Propagation Parameters
& uncertainties
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Logic Tree of Uncertain Parameters
Increase fault length by c [ Best-estimate rupture area [l Increase fault width by o
Weight ; Weight 1/3 Weight 1/3
Depth to top of fault 1 km Dep to top of fault 5 km
Weight 1/2 Weight 1/2
Hypocenter location along strike and dip
Equally-Distributed

T

Rupture velocity = 8 shear wave velocity
Weight 1/2

Reference rake angle — 30° Reference rake angle Reference rake angle + 30°
Weight 1/3 Weight 1/3 Weight 1/3

20% decrease in velocity USGS’ velocity model 20% increase in velocity
Weight 1/3 Weight 1/3 Weight 1/3

Stress drop = 100 bars Stress op :50 bars Stress drbp =200 bars
Weight 1/3 Weight 1/3 Weight 1/3
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Rock outcrop Site of interest
I —aOtress drop

Hypocenter Wave radiation R :
EE— Skm |

S T ERE

: i . 2} H] o e Rupture front

Eault width I ; q-:g“ Square subfault
: T
il SR el Nl
S Fi g Circular subewent

The source of a strong earthquake is taken as a superposition of the radiation from a
significant number of circular subevents with a constant stress drop. Rupture initiates at
the presumed hypocenter and propagates radially at a constant rupture velocity. Each

subevent is triggered when the rupture front reaches the center of the subevent. The

initiates the radiation of a displacement pulse.
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The Composite Source Model

wave propagation process is modeled with synthetic (analytical) Green’s functions in
both short- and long-period ranges. The short-period component is modified to account
of random lateral heterogeneity of the earth by adding scattered waves.

=
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Observed (red) vs. synthetic (blue) ground motions at station SKR (east horizontal
omponent) during 1999 Kocaeli earthquake (strike-slip)
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Discussion of Results of the
Maximum Considered Earthquake (MCE)
or My, 7.5
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Total Uncertainty

Southwestern segment
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Spectral Acceleration (g)

Spectral Acceleration (g)

Average Response Spectra
Southwestern segment
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Average Response Spectra
Reelfoot fault
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Influence of Fault Mechanism on the
Fling Step at 1472 site

Basic analysis
---- Fault strike 231.5°
Fault strike 236.5°

S b B~ O

1
(\9)

Displacement (m)
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Influence of Fault Mechanism on the
Fling Step at L472 site

— Basic analysis
Rake angle 150°
— Rake angle -150°

— Basic analysis

— Fault dip 70°

Displacement (m)

Displacement (m)

60
Time (sec) Time (sec)

For basic analysis:
Fault dip 90°
Rake angle 180°
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Influence of Depth to top of Fault and
Stress Drop on the Fling Step at 1472 site

— Basic analysis
Stress drop 100 bars
— Stress drop 175 bars

— Basic analysis
— Depth 3km
Depth 5km

Displacement (m)
Displacement (m)

b L 2 o = o
| R N |

20 40 60 80 40 60
Time (sec) Time (sec)

S

For basic analysis:
Depth 1km
Stress drop 150 bars
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Influence of Hypocenter Location on
Peak Rock Velocity at 1L.472 Site

Location of 1.472 Site

N

7 1 | Origin

1
2
151 3
4
5

Directivity Parameter Peak rock velocity if the hypocenter is
(X COS 0) at that subfault located at the center of this subfault
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Influence of Rupture Velocity on
Velocity Pulses at 1.472 Site

Vr=75% Vs
— Vr=85% Vs
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Validation of Synthetic Rock Motions
Comparison with Attenuation Relations
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Validation of Synthetic Rock Motions
Comparison with Attenuation Relations
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Validation of Synthetic Rock Motions
Comparison with NCHRP & AASHTO Guidelines
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Validation of Synthetic Rock Motions
Comparison with NCHRP & AASHTO Guidelines
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Validation of Synthetic Rock Motions
Comparison with Finite-Fault & Point-Source Models

L472 site - Mw 7.5 A1466 site - Mw 7.5

— This study
— Finite-fault
Point-source

— This study
— Finite-fault
Point-source
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Validation of Synthetic Rock Motions
Comparison with Finite-Fault & Point-Source Models
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Near-Field Characteristics
of the Selected Motions

Selection criteria of rock motions
1) Fit the average response spectra
2) Fling step in the direction of the slip on the fault
3) Velocity pulse in the fault-normal direction
4) Realistic peak rock accelerations
(within 75%-125% of Toro et al., 1997)
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Displacement (m)

Near-Field Characteristics
of the Selected Motions

Displacement (m)

1472 site - FP A1466 site - FP

Displacement (m)

Time (sec)

Rock Motions - 37

UNIVERSITY OF MISSOUREROLLE

Near-Field Characteristics
of the Selected Motions

IS55 site - FN ' IS55 site - V

Displacement (m)

Time (sec)
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Velocity (m/sec)

Velocity (m/sec)

Near-Field Characteristics
of the Selected Motions

locity (m/sec)

30 40 50
Time (sec)
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Near-Field Characteristics
of the Selected Motions
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St. Francis River Site (Far-Field)
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A3708 site is about
50km from the Reelfoot
fault and 87km from the
southwestern segment
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Far-Field Rock Motions
Comparison with NCHRP & AASHTO Guidelines

— FP component — FP component
— FN component — FN component
— V component

—— ATC/MCEER

— AASHTO

— V component
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Concluding Remarks

m The uncertainty of near-fault motions increases with

moment magnitude and decreases with distance to fault

m The southwestern segment (strike-slip) contributes more
to the total uncertainty than the Reelfoot fault (reverse)
due to its forward rupture directivity effects

m The vertical component associated with the Reelfoot

fault is stronger than that of the southwestern segment

m Fling step is dependent on the fault mechanism (strike,

dip and rake), depth to top of the fault and stress drop
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Concluding Remarks

m Velocity pulses are dependent on the hypocenter

location along the strike and rupture velocity

m The simulated spectral accelerations are higher than
those of the attenuation relations, point-source or finite-
fault models due to forward rupture directivity effects,
particularly for My, 7.5 for strike-slip faults

m Velocity pulses associated with My, 7.5 are very large as
compared to My, 7.0 or 6.5 that may impose special

seismic demands for structures very close to active faults
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Concluding Remarks

m [n comparison with ATC/MCEER spectra, the neat-
field motions in the proximity of the faults (<5 km) are
generally higher, and those around 10km are similar in
long period components but smaller in short period
components.

m'The far-field rock motion is on the average less than
what ATC/MCEER specified in their recommended

guidelines.

URAL HAZARDS
MITIGATION
INSTITUTE

Rock Motions - 45

23



