

In	Seismic S Ionlinear Meth	1	2. 1	- 120
Program	Soil model	Method	Stress	Reference
CHARSOIL	Ramberg-Osgood	Characteristics	Total	Streeter et al. (1973)
DESRA-2	Hyperbolic	Finite element	Effective	Lee and Finn (1978, 1991)
DESRAMOD2	Hyperbolic	Finite element	Effective	Vucetic (1998)
DESRA-MUSC	Hyperbolic	Finite element	Effective	Qiu(1998)
D-MOD(derived from DESRA-2)	M-K-Z (Matasovic, Konder, and Zelasko)	Finite element	Effective	Matasovic (1993)
MASH	Martin-Davidenkov	Finite element	Effective	Martin and Seed (1978)
DYNA1D	Nested yield surface	Finite element	Effective	Prevost (1989)
TESS	HDCP (Hardin-Drnevich- Cundall-Pyke)	Finite difference	Effective	Pyke (1979, 1985, 1992)
SUMDES	Hypoplasticity	Finite element	Effective	Li et al. (1992)
DEEPSOIL (derived from D-MOD)	Modified hyperbolic with extended Masing criteria	Finite element	Total	Hashash and Park (2001)

1 1	Seismic S	one ke	spo	inse
2D Mar	nlinear Meth	ecember 10	1111	o Domo
	mnear metri	ous m m	e IIII.	e Doma
Program	Soil model	Method	Stress	Reference
TARA-3	Hyperbolic	Finite element	Effective	Finn et al. (1986
DYNAFLOW	Multiple yield surface	Finite element	Effective	Prevost (1986)
DIANA	Different advanced models	Finite element	Effective	Kawai (1985)
FLAC	Hyperbolic (Finn and Byrne model)	Finite difference	Effective	Commercial
DYSAC2	Hypoplasticity	Finite element	Effective	- 80°
	11	0 Lungitude	aw.	

€40%			ſ	y-		Dec					de la	B		1	
	-	5	Sum	mar	y of	the	Syn	theti	сM	otio	ns	X			
Magnitude	M =6.5						l	VI =7.0	H	17	M =7.5				
Series No.	18	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a _{max} (g) FP	0.18	0.27	0.23	0.18	0.13	0.45	0.54	0.39	0.47	0.31	0.78	0.55	0.85	1.03	0.6
a_{max} (g) FN	0.15	0.24	0.27	0.20	0.12	0.42	0.47	0.32	0.41	0.35	1.10	0.73	0.94	1.02	0.7
		3	20			X	1				11				
				24	m).		13								-
						2 C						-	-		
-	1200										Calor				

540 / Durth			Max Pore Water Pressure Ratio											
Layer Depth No. (m)	Soil Type		6	Direct	IIT	FN Direction								
Series No.			1	2	3	4	5	1	2	3	4	5		
14	5.5~7.4	Sandy Silt	0.18	0.56	0.16	0.15	0.13	0.18	0.63	0.84	0.96	0.19		
219	7.4~11.8	Loose Sandy Silt	0.30	0.68	0.24	0.25	0.22	0.37	0.76	1.00	1.00	0.31		
3	11.8~18.2	Medium Dense Sand	0.13	0.27	0.11	0.11	0.10	0.13	0.30	0.40	0.46	0.13		
4	18.2~22.5	Dense Sand	0.05	0.16	0.06	0.07	0.06	0.10	0.18	0.23	0.27	0.08		
5	22.5~39.3	Dense Sand	0.03	0.06	0.02	0.03	0.02	0.04	0.07	0.09	0.09	0.03		

40°/			Max Pore Water Pressure Ratio										
Layer Depth No. (m)	Soil Type		FN Direction										
Series No.			6	7	8	9	10	6	7	8	9	10	
Ap	5.5~7.4	Sandy Silt	0.93	0.98	0.87	1.00	0.38	0.98	0.84	0.97	0.92	1.00	
290	7.4~11.8	Loose Sandy Silt	1.00	1.00	1.00	1.00	0.49	1.00	1.00	1.00	1.00	1.0	
3	11.8~18.2	Medium Dense Sand	0.50	0.56	0.42	0.64	0.21	0.48	0.41	0.49	0.50	0.55	
4	18.2~22.5	Dense Sand	0.33	0.37	0.26	0.48	0.14	0.31	0.26	0.32	0.31	0.38	
5	22.5~39.3	Dense Sand	0.14	0.17	0.10	0.20	0.06	0.13	0.12	0.13	0.12	0.14	

>	11	ts for				ber		NA.	1	W.	1	
Layer Depth		Soil	Max Pore Water Pressure Ratio									
No.	(m)	Туре		FP	Direct	ion	17	-8	FN	Direct	ion	1
Series No.			11	12	13	14	15	11	12	13	14	15
Apr	5.5~7.4	Sandy Silt	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
190 2	7.4~11.8	Loose Sandy Silt	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3	11.8~18.2	Medium Dense Sand	0.85	0.50	0.59	0.55	0.66	1.00	0.60	0.93	0.92	0.66
4	18.2~22.5	Dense Sand	0.64	0.36	0.44	0.39	0.48	0.84	0.64	0.67	0.65	0.48
5	22.5~39.3	Dense Sand	0.28	0.19	0.21	0.20	0.22	0.36	0.33	0.32	0.21	0.24

