

BTMA Protocol Implementation in NS2

by

Yi Wang

at Missouri University of Science & Technology

A University Transportation Center Program
UTC
R165

Disclaimer

The contents of this report reflect the views of the author(s), who are responsible for the facts and the

accuracy of information presented herein. This document is disseminated under the sponsorship of

the Department of Transportation, University Transportation Centers Program and the Center for

Infrastructure Engineering Studies UTC program at the Missouri University of Science & Technology,

in the interest of information exchange. The U.S. Government and Center for Infrastructure

Engineering Studies assumes no liability for the contents or use thereof.

NUTC

Technical Rep

2. Government Accession No. Recipient's Catalog No.
ort Documentation Page

1. Report No.

UTC R165

3.

5. Report Date

September 2008

4. Title and Subtitle

BTMA Protocol Implementation in NS2

6. Performing Organization Code
7. Author/s

Yi Wang

8. Performing Organization Report No.

 00010050

10. Work Unit No. (TRAIS) 9. Performing Organization Name and Address

Center for Infrastructure Engineering Studies/U
Missouri University of Science &
220 Engineering R

TC program
 Technology

esearch Lab

.

DTRS98-G-0021

Rolla, MO 65409

11. Contract or Grant No

13. Type of Report and Period Covered

Final

12. Sponsoring Organization Name and Address

U.S. Department of Transportation
Research and Special Program
400 7

s Administration

-0001
14. Sponsoring Agency Code th Street, SW

Washington, DC 20590

15. Supplementary Notes

16.

der to
ess channels, I designed a new approach to channels between mobile nodes in NS2.

Abstract
BTMA protocol is a new protocol designed to mitigate hidden terminal problem in wireless communication. However, the
challenging problem of implementing it in NS2 is there is only one physical channel in original NS2 mobile models. In or
add more wirel simulate in multiple

17. Key Words

Design, Education, Future Transportation Professionals
 Servi Virgin .

18. Distribution Statement

No restrictions. This document is available to the public through the
National Technical Information ce, Springfield, ia 22161

19. Security Classification (of this report)

unclassified

ication (of this page) 21. No. Of Pa s

5

22. Price 20. Security Classif

unclassified

ge

Form DOT F 1700.7 (8-72)

BTMA Protocol Implementation in NS2
1. Background
 BTMA protocol is a new protocol designed to mitigate hidden terminal problem
in wireless communication. However, the challenging problem of implementing it in
NS2 is there is only one physical channel in original NS2 mobile models. In order to
add more wireless channels, I designed a new approach to simulate in multiple
channels between mobile nodes in NS2.
 (1).NS2 Architecture.

NS2 meets both of these needs with two languages
» C++ (Protocol/Layers)
» OTcl (Scenario/Topology)

Agent (TCP、UDP...)

Traffic Generator (FTPEvent-driven

Scenario

All protocol specific implementations are done in C++, while testing scenarios are
done in OTcl. Like those in original NS2 implementation, my new dual busy tone
channels are also implemented in C++, which can communicate with other original
components seamlessly.

(2).Original Mobile Node Model in NS2

As show in the diagram, all physical channel information are held by MAC layer and
PHY layer protocols. So, my implements work was done in MAC layer and PHY
layer. One challenging part of this task is all the original NS2 protocols and interfaces
have to be taken care of, otherwise new component won’t work with rest part of NS2.

Classifier:Forwarding

Agent: Protocol Entity

Node Entry

Node

ARP

Radio
Propagation
Model

MobileNode

LL

MAC
PHY

LL

CHANNEL

LL

MAC

LL:Link layer object

IFQ:Interface queue

MAC:Mac object
PHY PHY:Net interface

Routing

(3).My modifications into NS2
• Override recv() function
• Implement new state machine (adding internal member variable and

functions), timers!
• Define new packet headers
• Event Scheduler

SendUp()

SendDown()

Event Scheduler let up-target handle this packet
at some delay

Txtime()….wait

Call downtarget.recv()

Tx_resume()
mhDefer(sifs)
DeferTimer:: Event()
DeferHandler()
Check_pktTx
TRANSMIT_macro
Downtarget.recv()

(4)Hacking into NS2 hierarchy
Given that essentially everything in ns2 is event, as long as the targeted nodes are be
notified at the right time about the event of busy tone, it is done.

 n0
call

n1
recvBusyTone()
;

Busy Tone
 Packet

 n0
ptr->n1-

n

ns2’s way:
msg sending

Bypass the msg
sending routine,
change the
remote state
directly

As shown in following diagram, logically an extra Busy Tone Channel should behave
like an extra physical channel which could be used for sending and receiving busy
tone signal.

ARP

Radio
Propagation
Model

LL

MAC
PHY

LL

Main
Channel

LL

MAC

 LL:Link layer object

IFQ:Interface queue

MAC:Mac object
PHY PHY:Net interface

Busy Tone
Channel

2. Implementation Details:
(1). BusyTone class:
 As mentioned in poster session, there are two extreme approaches for implementing extra busy tone
for MAC protocols in ns2: hacking and extending ns2.
 By hacking into MAC class instances, the whole design philosophy of ns2 would be violated.
Originally in ns2, distributed nodes which are represented by multiple MAC class instances can only
communicate with each other by sending and receiving packets. In the process of sending and
receiving packets, calculations of propagation delay, transmission delay and power consumption can
be done when downward classes (such as wireless physical channel) are passing the packets. The
hacking method changes the state of remote nodes by using the pointers of the object instances to
change the busy tone state variable directly. In this way, hacking method benefits in bypassing the
complexity of class hierarchies of ns2, but suffers from losing the chance of simulating the wireless
physical channel and power consumption.
 By extending the original ns2 to support multiple interfaces and multiple channels, the
implementation could benefit in:

• Embedding into existing architecture of ns2 seamlessly and gracefully.
• Having the calculation of various delays done by other classes.
• Reducing difficulties in implementing new multi-channel-multi-interface protocols.

 However, the downside of the extending way comes together with its benefits: It requires diving into
not only the C++ class hierarchies of ns2 but also the Tcl hierarchies, which could become very
challenging and time consuming. In the C++ part of ns2, extending it to support multi-channel-multi-
interface requires modifications of Mobile Node class, wireless-phy class, mac class … Almost the
whole source code of wireless implementation in ns2 should be examined and modified whenever
necessary. That’s only part of the story. Due to the dual implementation of ns2 (C++ & Tcl), Tcl part
requires corresponding modification if the C++ part is changed.
 With all the above considerations and a tight schedule, the BusyTone class is implemented in a
hybrid way of hacking and extending ns2.
 (1). Storing pointers to BusyTone objects:
 In initialization, BusyTone class object stores the pointers to itself into a global table. Save local
BTMA object’s pointer inside BusyTone. Whenever BTMA tries to send busy tone packets, BTMA
objects call its own BusyTone object. One BusyTone object could access BusyTone instances of
targeted node by looking up in the global table. In this way, BusyTone doesn’t in fact send out or
receive any packets using real channel.
 (2).Asking GOD for neighbors:
 In wireless simulation, there is a General Operation Director (GOD) which has access to location
information of all the wireless nodes.
 In the implementation of BusyTone, it utilizes the information from GOD to know which nodes are
in the neighborhood.
 (3). Calculating delays in BusyTone class:
 BusyTone class is in fact a simplified MAC class which has all the delay calculations (processing
delay, transmission delay and propagation delay) done by means of timers.

Implemented FSM in BTMA-NTS paper.

Illustration of implementation

Publication
Maggie Cheng, Yadi Ma, Yi Wang, “Improving Channel Throughput of WLANs and Ad Hoc
Networks Using Explicit Denial of Request”, IEEE Globecom 2006, pp1-6.

2. Call
 Recv ()

Recv RTSSend RTS

BTMA
(Recving) BusyTone BusyTone

Main Wireless Channel

BusyTone ‘this’ Table this this

Virtual BT Channel

1. Get ptr
to Target

3. Calculate
 Delay

4. Set
BusyTone

0. Find
Neighbors

BTMA
(Sending)

GOD

	Yi Wang Final Report Cover Page.doc
	Disclaimer

	Yi Wang Report.doc

