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BTMA Protocol Implementation in NS2 
1. Background 
 BTMA protocol is a new protocol designed to mitigate hidden terminal problem 
in wireless communication. However, the challenging problem of implementing it in 
NS2 is there is only one physical channel in original NS2 mobile models. In order to 
add more wireless channels, I designed a new approach to simulate in multiple 
channels between mobile nodes in NS2.  
 (1).NS2 Architecture. 

NS2 meets both of these needs with two languages 
» C++ (Protocol/Layers) 
» OTcl (Scenario/Topology) 

 

 

Agent (TCP、UDP...) 

Traffic Generator (FTPEvent-driven  

Scenario 

All protocol specific implementations are done in C++, while testing scenarios are 
done in OTcl. Like those in original NS2 implementation, my new dual busy tone 
channels are also implemented in C++, which can communicate with other original 
components seamlessly.   
 
 
 
 
 
 
 
 
 
 



(2).Original Mobile Node Model in NS2 
 

As show in the diagram, all physical channel information are held by MAC layer and 
PHY layer protocols. So, my implements work was done in MAC layer and PHY 
layer. One challenging part of this task is all the original NS2 protocols and interfaces 
have to be taken care of, otherwise new component won’t work with rest part of NS2. 
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(3).My modifications into NS2 
• Override recv() function 
• Implement new state machine (adding internal member variable and 

functions), timers! 
• Define new packet headers 
• Event Scheduler 
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Call downtarget.recv()
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(4)Hacking into NS2 hierarchy 
Given that essentially everything in ns2 is event, as long as the targeted nodes are be 
notified at the right time about the event of busy tone, it is done. 
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As shown in following diagram, logically an extra Busy Tone Channel should behave 
like an extra physical channel which could be used for sending and receiving busy 
tone signal. 
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2. Implementation Details: 
(1). BusyTone class: 
   As mentioned in poster session, there are two extreme approaches for implementing extra busy tone 
for MAC protocols in ns2: hacking and extending ns2.  
   By hacking into MAC class instances, the whole design philosophy of ns2 would be violated. 
Originally in ns2, distributed nodes which are represented by multiple MAC class instances can only 
communicate with each other by sending and receiving packets. In the process of sending and 
receiving packets, calculations of propagation delay, transmission delay and power consumption can 
be done when downward classes (such as wireless physical channel) are passing the packets. The 
hacking method changes the state of remote nodes by using the pointers of the object instances to 
change the busy tone state variable directly. In this way, hacking method benefits in bypassing the 
complexity of class hierarchies of ns2, but suffers from losing the chance of simulating the wireless 
physical channel and power consumption. 
   By extending the original ns2 to support multiple interfaces and multiple channels, the 
implementation could benefit in: 
 



• Embedding into existing architecture of ns2 seamlessly and gracefully. 
• Having the calculation of various delays done by other classes. 
• Reducing difficulties in implementing new multi-channel-multi-interface protocols. 
 

  However, the downside of the extending way comes together with its benefits: It requires diving into 
not only the C++ class hierarchies of ns2 but also the Tcl hierarchies, which could become very 
challenging and time consuming. In the C++ part of ns2, extending it to support multi-channel-multi-
interface requires modifications of Mobile Node class, wireless-phy class, mac class … Almost the 
whole source code of wireless implementation in ns2 should be examined and modified whenever 
necessary. That’s only part of the story. Due to the dual implementation of ns2 (C++ & Tcl), Tcl part 
requires corresponding modification if the C++ part is changed.  
   With all the above considerations and a tight schedule, the BusyTone class is implemented in a 
hybrid way of hacking and extending ns2.  
   (1). Storing pointers to BusyTone objects: 
   In initialization, BusyTone class object stores the pointers to itself into a global table. Save local 
BTMA object’s pointer inside BusyTone. Whenever BTMA tries to send busy tone packets, BTMA 
objects call its own BusyTone object. One BusyTone object could access BusyTone instances of 
targeted node by looking up in the global table. In this way, BusyTone doesn’t in fact send out or 
receive any packets using real channel. 
  (2).Asking GOD for neighbors: 
  In wireless simulation, there is a General Operation Director (GOD) which has access to location 
information of all the wireless nodes. 
  In the implementation of BusyTone, it utilizes the information from GOD to know which nodes are 
in the neighborhood. 
  (3). Calculating delays in BusyTone class: 
  BusyTone class is in fact a simplified MAC class which has all the delay calculations (processing 
delay, transmission delay and propagation delay) done by means of timers. 

 
Implemented FSM in BTMA-NTS paper. 

 
 

 
 



 
Illustration of implementation 

 

 
Publication 
Maggie Cheng, Yadi Ma, Yi Wang, “Improving Channel Throughput of WLANs and Ad Hoc 
Networks Using Explicit Denial of Request”, IEEE Globecom 2006, pp1-6. 
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