

A Multi-tiered Architecture for Content
Retrieval in Mobile Peer-to-Peer

Networks

by

Neelanjana Dutta, Raghavendra Kotikalapudi,
Abhinav Saxena and Sriram Chellappan

A National University Transportation Center
at Missouri University of Science and Technology NUTC

R231

Disclaimer

The contents of this report reflect the views of the author(s), who are responsible for the facts and the

accuracy of information presented herein. This document is disseminated under the sponsorship of

the Department of Transportation, University Transportation Centers Program and the Center for

Transportation Infrastructure and Safety NUTC program at the Missouri University of Science and

Technology, in the interest of information exchange. The U.S. Government and Center for

Transportation Infrastructure and Safety assumes no liability for the contents or use thereof.

NUTC

Technical Report Documentation Page

1. Report No.

NUTC R231

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

A Multi-tiered Architecture for Content Retrieval in Mobile Peer-to-Peer Networks
5. Report Date

January 2012

6. Performing Organization Code

7. Author/s

Neelanjana Dutta, Raghavendra Kotikalapudi, Abhinav Saxena and Sriram Chellappan

8. Performing Organization Report No.

 00022763

9. Performing Organization Name and Address

Center for Transportation Infrastructure and Safety/NUTC program
Missouri University of Science and Technology
220 Engineering Research Lab
Rolla, MO 65409

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

DTRT06-G-0014

12. Sponsoring Organization Name and Address

U.S. Department of Transportation
Research and Innovative Technology Administration
1200 New Jersey Avenue, SE
Washington, DC 20590

13. Type of Report and Period Covered

Final

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

In this paper, we address content retrieval in Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered architecture for content
retrieval, where at Tier 1, we design a protocol for content similarity governed by a parameter α that trades accuracy with search
overhead. At Tier 2, we introduce a novel concept called Chained Bloom Filters and design a protocol where popular search items are
linked with popular content at each node in an efficient manner for subsequent retrieval. Extensive analysis and numerical simulations
demonstrate the effectiveness of our techniques.

17. Key Words

P2P Networks, Mobility, Content Management

18. Distribution Statement

No restrictions. This document is available to the public through the
National Technical Information Service, Springfield, Virginia 22161.

19. Security Classification (of this report)

unclassified

20. Security Classification (of this page)

unclassified

21. No. Of Pages

9

22. Price

 Form DOT F 1700.7 (8-72)

A Multi-tiered Architecture for Content Retrieval in Mobile Peer-to-Peer Networks

Neelanjana Dutta, Raghavendra Kotikalapudi, Abhinav Saxena and Sriram Chellappan
Department of Computer Science

Missouri University of Science and Technology
Rolla, Missouri 65409, USA.

Email: {nd2n8, rkyvb, abhinav.saxena}@mail.mst.edu, chellaps@mst.edu

Abstract—In this paper, we address content retrieval in
Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered
architecture for content retrieval, where at Tier 1, we design
a protocol for content similarity governed by a parameter
α that trades accuracy with search overhead. At Tier 2,
we introduce a novel concept called Chained Bloom Filters
and design a protocol where popular search items are linked
with popular content at each node in an efficient manner
for subsequent retrieval. Extensive analysis and numerical
simulations demonstrate the effectiveness of our techniques.

Keywords-P2P Networks, Mobility, Content Management

I. INTRODUCTION

Mobile Peer-to-Peer (P2P) networks are popular avenues
for sharing information and services. In these networks, mo-
bile users form a distributed ad hoc network and exchange
information over the wireless medium. Applications include
emerging participatory sensing networks [1] mobile social
networks [2], [3], vehicular networks [4], [5] etc.

Our Motivations: In this paper, we address content
retrieval in mobile p2p networks. For queries issued, we
have two objectives: reduce system overhead in searching
for accurate content, and retrieve popular content in the
system related to query issued. In content retrieval, there
is a trade-off between user satisfaction (i.e., accuracy of
content retrieved) and overhead. Unfortunately, in existing
techniques, searches for queries at each node is a best
effort process, and in the worst case, the entire database
is searched. From a scalability perspective, search overhead
can be tremendous. We aim to reduce the search overhead
founded on two observations: a) Based on past knowledge
of searches, the system can derive some intelligence on
expected accuracy, and use this knowledge to limit wasteful
searches for similar queries; b) Also, users may not always
desire perfectly matching content, and if users can specify
this in their queries, searching overhead can be significantly
reduced. Furthermore, multiple users will share similar inter-
ests and hence issue similar queries. Since the search process
involves multiple nodes, each node can recognize popular
queries, and hence popular content. For any query issued, if
this query is similar to popular queries serviced earlier, then
corresponding popular content can be quickly retrieved.

In mobile p2p networks, communication overhead, a
network centric metric has been well addressed [4]–[8].
However, we believe that search overhead at local nodes is
also important. In large scale networks minor improvements
in search overhead locally will have major impacts network
wide. Our techniques developed here can complement works
on network-centric overhead metrics for overall improve-
ment in system performance.

Our Contributions: In this paper, we design a Multi-
Tiered architecture and a protocols for content retrieval in
mobile p2p networks. Tier 1 in our architecture is designed
for reducing search overhead at each node while retrieving
accurate content. The premise stems from the observation
that for short queries, there is a higher chance of retrieving
more accurate content. When queries get longer, the chances
that highly accurate content can be found is lower. In this
paper, we demonstrate how the trend of accuracy vs. query
length follows a logistic function. With this knowledge,
each node can make intelligent choices on when to stop
searching the database beyond which more accurate content
is unlikely to be found. Secondly, logistic functions are
governed by a parameter α that determines function growth
rate. Users can set this parameter based on desired accuracy
of content requested, using which search overhead can be
further reduced at each node.

Tier 2 is designed for retrieving popular content. In
mobile p2p networks, when similar queries are issued by
multiple nodes, it allows popular queries to be disseminated
to multiple nodes. In Tier 2, we define a new metric called
Rank for each content in the database of a node, where
rank is computed based on popularity of its keywords. We
then introduce a new concept called Chained Bloom Filter,
where popular key words already processed by the node are
linked to popular content in a space efficient manner. For
new queries, we design a protocol that efficiently determines
if key words requested in the query are popular (i.e., they
are in the Filter), and if they are, it quickly returns the
correspondingly linked popular content.

Our analysis shows that accuracy of content retrieved
follows a logistic trend that can be captured with parameter
α. We show that by allowing α to be user adaptive, search
overhead reduces. We also study how our proposed rank and

Table I
AN EXAMPLE OF A DATABASE AT A LOCAL NODE

File 1 Beatles mp3 Rock English
File 2 Elvis Presley mp3 Summer Kisses English
- - - - -
- - - - -
- - - - -
File F Target Coupon Labor Day

chained bloom filter techniques are effective in both retrieval
of popular content and saving overhead.

The paper is organized as follows. In Section II, we
present preliminaries and important metrics. The proposed
multi-tier architecture is presented in detail in Section III.
Performance Evaluations are then presented in Section IV,
and we conclude the paper in Section V.

II. PRELIMINARIES AND METRICS

Network Model: The mobile p2p network has mobile
nodes communicating wirelessly. Each node has a database
of content (i.e., files) containing meta-data describing con-
tent. An example of a database at a node is in Table I. Users
issue queries containing key words. For each query issued,
searches are conducted in the local vicinity of the requesting
node (or user) to retrieve accurate content. In this paper, we
emphasize on making the retrieval process adaptive via two
critical ancillary goals: minimize search overhead based on
past knowledge of searches, and retrieve popular (but still
relevant) content for the query.

Content Similarity Metrics: A critical issue in content
retrieval is similarity between a query and content (or file).
There are a number of related metrics including te Sorensen
Similarity metric, Jaccard Coefficient metric, and Cosine
Similarity Metric [5], [9]–[11]. While each metric has its
own applications, we focus on Cosine Similarity, which
borrows from Vector Space Model (VSM). For D files in
the database of a node, and each file tagged with upto
n keywords per file, we represent each file as a row in
a D × n matrix. Each file is then projected as a binary
vector in a n-dimensional vector space. Any query can
be treated as a vector in the space, and the similarity
between the query and a file is then computed as angle
(θ) between the query and the file vector. Formally, for a
query q with keywords −→q = (q1, q2, q3, . . . , qn), and a file
f with keywords

−→
f = (fj1, fj2, fj3, . . . , fjn), the similarity

between q and f denoted as θq,f (in degrees) is

θq,f = Cos−1(
−→q � −→

f

|−→q | · |−→f |
) (1)

= Cos−1(

∑n
i=1 qifji√

(
∑n

i=1 q
2
i)×

√
(
∑n

i=1 f
2
ji)

).

Naturally, smaller the value of θq,f , more accurate is File
f for Query q, and vice versa.

III. THE MULTI-TIERED ARCHITECTURE AND

PROTOCOLS

A. Overview

The proposed architecture is comprised of 2 tiers: Tier
1 for reducing search overhead during accurate content
retrieval, and Tier 2 for efficiently retrieving popular content.
Note that there are two situations in which a node (say
Node A) receives a query to process. Either the local user
of Node A issues a query, or Node A receives a query
from a neighbor. In either case, a node receiving a query
first processes the query at Tier 1, where its local database
is searched. The novelty of Tier 1 is a technique that
minimizes search overhead based on prior searches, such
that at a slight cost on accuracy, a significant amount of
search overhead can be saved. The query is then processed
at Tier 2, where we design a Chained Bloom Filter technique
to efficiently store and retrieve popular content based on
processing queries for other nodes. Results from both tiers
are then forwarded to the query issuing node.

B. Tier 1 - Reducing Search Overhead

Content in a mobile p2p network is identified by a set of
metadata. While some content can have many descriptors,
others may only have less descriptors. Since the amount
and the nature of metadata varies from user to user, this
negates attempts to index the database. Consequently, for
any Query q arriving at a node, the worst case searching
time is O(D) × t̄, where D is the no. of database entries,
and t̄ is the processing time to find the similarity between
Query q and a File f . This imposes a tremendous overhead
for a single query, which increases for multiple queries.
Note that due to the ad hoc nature of p2p systems, while
some users be specific about content desired, others can be
general. The former case happens when the no. of keywords
requested in the query is more, and the latter happens when
no. of keywords is small. Naturally, when query lengths
are smaller, it possible to return more accurate content,
and vice versa. Formally, θ (our similarity metric) increases
(i.e., accuracy decreases) for increasing query lengths due
to (likely) decreased keyword matches between queries and
files (from Equation 1). However, the growth in the increase
of the θ metric becomes progressively slower due to the
Cos−1 function. Based on this intuition, we conjecture that
Content Retrieval in ad hoc environments like mobile p2p
networks follows the trend of a Logistic Curve in terms of
Accuracy vs. Query Length.

We have conducted an extensive simulation study to
validate this conjecture, and results are in Table II. In each
case, we obtain the best θ values for varying query lengths
via an exhaustive search of the database, and tried to fit a
curve to best θ vs. Query Length. In Table II, D is the
No. of Files in the Database; fl is the maximum range
of the No. of keywords in each file in the database; ql is

50

55

60

65

70

75

80

85

0 50 100 150 200 250

A
n
g
le
(
)
in
D
e
g
re
e
s

Query Length

Curve for Simulation
Data

Logistic Curve Fitted

Figure 1. The Trend of Logistic Function

Table II
THE LOGISTIC FUNCTION FOR VARIOUS SYSTEM PARAMETERS

Database Logistic RMSE
Parameters Function
D = 10000 86.99 × L(0.033ql) 4.33
fl from 1 to 4
D = 12000 86.37 × L(0.042ql) 4.16
fl from 1 to 4
D = 10000 86.37 × L(0.029ql) 4.57
fl from 1 to 6
D = 12000 86.38 × L(0.03ql) 4.48
fl from 1 to 6

query length; and RMSE is the root mean squared error
between θ (derived via simulations), and θ obtained from the
Logistic Function correspondingly shown in Table II, which
was derived via symbolic regression techniques (a variant of
Genetic Algorithms) to fit the curve. Each simulation was
conducted 100 times and averaged. Note that L(x) in Table
II is the standard Logistic Function L(x) = 1

1+e−x . As, we
can see the RMSE is quite low demonstrating the fidelity of
the Logistic Function for Accuracy (θ) vs. Query Length. For
ease of comprehension, we illustrate the trend of θ obtained
via simulations for the case when D = 10000 and fl is from
1 to 4 (first entry in Table II), and the Logistic function fitted
for this case in Figure 1. As we can see the fidelity of the
Logistic Function fit is quite high. Similar trends hold for
other cases as well, not shown here.

To the best of our knowledge, this is the first work
that identifies the logistic trend in content retrieval in p2p
networks. At Tier 1, we exploit this trend for reducing search
overhead with minimal compromise to accuracy. Each node
first derives the Logistic Trend within its own database.
The node can do this via prior knowledge of searches,
or via periodic random sampling of the local database.
We generalize Logistic Functions derived in Table II as
LF (ql) = β × L(α × ql), where ql is the length of the
incoming query (See Table II). Each node first derives α
and β for its local database. For any incoming query, each
node first determines the expected best accuracy of search

results for the length of that query ql, and then deriving
LF (ql). The node will then search the database to find a
matching file, and it will stop searching once a file is found
that is less than or equal to the expected best accuracy.

Discussions: A critical issue in Tier 1 design is α which
decides logistic function growth, and which each node
derives to return the expected level of accuracy. However,
users can also manipulate α. When α is set high for a query,
the growth of the Logistic Function increases, meaning users
prefer a lower accurate file (higher θ), and more overhead
savings, and vice versa. Thus α provides another leverage
for users to adaptively choose accuracy at a cost of overhead.
We study this further using Simulations in Section IV.

C. Tier 2 - Retrieving Popular Content

While Tier 1 focused on accuracy with overhead sav-
ings, Tier 2 emphasizes on popularity. Some queries (i.e.,
keywords) may be very popular, and when similar queries
are asked, our goal is to not only focus on accuracy, but
also to quickly and efficiently retrieve popular content in
the database relevant to that query. The principle behind
our popularity scheme is to assign a metric called Rank for
each file in the database, where Rank is a function of how
popular the keywords in that file are. Each node maintains
the Rank for every file in its database independently. As
keywords are serviced by the node, they are efficiently
hashed into a novel Chained Bloom Filter (CBF), along with
popular files for these keywords. When new queries come,
the corresponding keywords are compared with those in the
Filter, and corresponding popular files are quickly returned.

Past access frequency of a keyword: The past access
frequency (μn(k)) captures popularity of a keyword in terms
of no. of times the keyword has been queried in the past,
and also how recently it was requested. For a keyword k at
time tn it is computed every �t time interval as

μn(k) = λn−1N1(k) + λn−2N2(k) + . . . (2)

+λn−i+1Ni−1(k) +Nn(k),

where Ni(k) is the No. of times keyword k has been
queried at the ith instance within the past �t time interval
(1 ≤ i ≤ �t), and λ is a damping factor λ (0 < λ < 1)
denoting popularity decrease of a keyword with time.

Rank of a file: We now address now address file
popularity. Our Rank metric captures file popularity based
on frequency and time of keyword requests. A file whose
keywords have been asked often recently is more desirable
to users who issue queries with similar keywords. One naive
technique for computing Rank could be to sum up past
access frequencies of all keywords in the file. However,
this technique favors files with more keywords. W compute
the Rank of a file as the average of access frequencies
of keywords in the file. Note that the Rank computation
is dynamic and is re-computed for each file in �t time

intervals. Formally, the Rank of a file f with z keywords
{f1, f2, f3, . . . , fz} at time instant n is

Rankn(f) =

∑z
i=1 μn(fi)

z
, (3)

where μn(fi) is defined in Equation 2. Note that a high
rank for a File f means f has at-least one keyword that
has been requested often recently. Thus, for a Query q with
keywords matching keywords in File f , it is ideal to return
File f as a popular file for Query q.

Our Chained Bloom Filter Technique: We now present
our Chained Bloom Filter approach for storing and retrieving
popular (highly ranked) content 1. There are two operations
involved in Tier 2: Updating the Chained Bloom Filter, and
Retrieving content from the Chained Bloom Filter. We first
discuss updation. When a query comes in, then a node will
hash the keywords into a regular Bloom Filter with k hash
functions and m bits. The node then computes the Rank for
files that have at-least one of the key words in the query.
The node determines the top x files in terms of Rank, and
inserts the ids of these x files in another array of m bits
at the same positions in the Bloom Filter that were set
to 1. The respective positions in both arrays are linked to
each other, leading to the term Chained Bloom Filter. We
consider the list of file IDs chained against each bloom
filter bit as a bucket for that bit position. To summarize,
our Chained Bloom Filter technique efficiently links prior
keywords searched at a local node with relevant popular
content in that node for quick retrieval. We next present the
details of our scheme, followed by the analysis.

We now discuss how to search the Chained Bloom Filter.
For a Query q arriving at Tier 2 of a node, the node first
checks if at-least one keyword in the Query q is present in
the Filter. If not, then the keywords were never serviced
by the node, and there is nothing to retrieve at Tier 2.
Otherwise, for each position in the Bloom filter where the bit
is set as 1 corresponding to every keyword’s hash, the node
retrieves the linked files linked in the corresponding bucket.
The intersection of all such buckets is then considered to be
the popular file(s) corresponding to at-least one keyword in
the query and is returned to the node.

One issue in the proposed scheme is memory limitations
at a node. With time, more queries arrive, and more key-
words are hashed. Importantly, since the bucket chained to
each bit will also have memory limitations, there will be a
limit of the no. of file ids stored. In our scheme, we ensure
that when buckets are full, and files have to be replaced to
accommodate new queries, the newer files must have equal
or higher rank than current files. Otherwise, they are deferred
from being added to the Chained Bloom Filter until their
Rank becomes more than those currently in the Filter.

1An excellent survey of Bloom Filters can be found in [12].

1) Analysis of Tier 2: We now conduct an analysis of our
Tier 2 architecture and our popularity aware content retrieval
protocol in terms of: retaining popular files in the filter, and
probability of returning relevant files. We denote P (X) as
the probability that Statement X is true. We denote rf as the
Rank of file f . There are k hash functions during hashing
of a keyword in the Bloom Filter. We denote N as total no.
of files in the database, and c is the capacity of each bucket,
which is the no. of file ids that can be stored in it.
P f ′
f Probability of a file f ′ is not present in the filter

at a node when File f is present, where Rank(f ′) <
Rank(f): It is easy to see that P (f ′ is not in Filter when f
is in the filter) = P (keywords of f ′ is not hashed in same
buckets as keywords in f) × P (keywords of f ′ is hashed
in buckets where all files are ranked higher that rf ′).

To derive the worst case probability, we assume that all
files have a minimum of l keywords. We also assume that in
total there are S files in the node’s database whose ranks are
higher than rank(f ′). We also assume that all l keywords of
a file can be hashed to k′ distinct buckets at the minimum.
In worst case k′ = 1. So the probability of keywords of f ′

is not hashed in same buckets as keywords in f is,

P1 =

(
m−k′
k′

)
(
m
k′
) . (4)

Similarly, the probability that keywords of f ′ is hashed
in buckets where all files are ranked higher that r′ is,

P2 =

(
S
c

)m−k′
−∑m−k′

i=1

∑m−k′
k′

j=1

((
S
j

)× (
m−k′
k+i

))j

(
N−1
c

)m−k′
−∑m−k′

i=1

∑m−k′
k′

j=1

((
N−1
j

)× (
m−k′
k+i

))j
.

(5)

Consequently, we have

P f ′
f = P1 × P2. (6)

Probability of returning files irrelevant files to a query
If a query and a file have no keywords in common with each
other, the file is called irrelevant to the query. This could
happen in Bloom Filter based designs due to the inevitability
of False Positives. We study this probability here.

Let i be the number of keywords in a current Query qcur
and ε (i ≥ ε) be the maximum number of keywords matching
in a cached query with the incoming query. Let us consider
Query qarb as the arbitrary cached query for which results
were returned in response to qcur, which is a False Positive.
So the probability that a keyword of qarb is also hashed to
the same bits as query qcur is,

=
k

m
(m− i− 1)

(
k − 1

m− 1

)(
k − 2

m− 2

)
...

(
1

m− k + 1

)
(7)

= (n− i− 1)
k!

(m− k + 1)!

Table III
SIMULATION PARAMETERS AND VALUES

Parameter Default Values
Simulation Time 120 units
Simulation area 15× 15 sq. units
No. of nodes 100
Communication Range 1 unit
No. of files per node 1000 − 2000
Total No. of Keywords 50
No. of keywords in file 2− 8
No. of keywords in query 2− 8
Wait time at a point 5− 15 units
No. of nodes querying at an instant 1− 5
No. of bits in bloom filter 20
Capacity of each bucket 10
No. of hash functions 3
Damping factor (λ) 0.8
Number of top ranked files (x) 2
Neighborhood searched 5 hops

For files associated to qarb to be returned, this process
has to repeat at-least ε times. So the probability becomes,

(
ki

εk

)[
(n− i− 1)

k!

(m− k + 1)!

]ε
(8)

So the probability of returning only irrelevant files is,

i−ε∑
j=i

(
ki

k(ε + j)

)[
(n− i− 1)

k!

(m− k + 1)!

]ε+j

(9)

Note that in the above expression if ε = 0, it represents
the case of false positive, which means no relevant query has
been cached yet, still the system returns some non-relevant
files. For ε > 0 it means that there are relevant files in the
system, but non-relevant files are returned instead of them.

IV. PERFORMANCE EVALUATION

A. Simulation Set-up

We consider 100 nodes following Random Way Point
Model in a 15 × 15 square unit area. Each node stores
a number of files with keywords. The size of each file
is considered as a single memory unit. Every node also
maintains a chained bloom filter. Nodes generate queries
containing keywords. Every query is processed at Tier 1,
Tier 2 and forwarded to nodes within 5 hops. Results re-
turned are consolidated from multiple node searches. Default
parameters are listed in Table III.

B. Performance Evaluation of Tier 1

In Figures 2, 3, we study performance of search protocol
in Tier 1. In all the Figures, the term PS stands for the
Proposed Search Technique (in Section III), while ES stands
for the baseline Exhaustive Search Technique, where the
entire database is searched.

Figure 2 shows that with more files in the database, search
overhead increases since there are more options. Figure 2

also shows that with increasing files, our protocol for Tier
1 reduces search overhead compared to exhaustive search.
With more files, our proposed technique converges, since
time taken to find expected similarity tends to grow very
slowly beyond a point. While there is not much appreciable
difference, queries with longer keywords converge slightly
faster, again for the same reason that for longer queries
highly accurate results are difficult to find resulting in faster
convergence. In Figure 3, we study how accuracy (θ) is sacri-
ficed when saving overhead. As we see, the worst case error
between our technique and exhaustive search is around 9◦,
which is acceptable when compared to significant savings
in overhead, especially as error reduces for increasing files
in the database at each node.

C. Performance Evaluation of Tier 2

In Figure 4, we study miss rate as a function of query
rank (where rank is based on popularity of keywords in the
query from Equation 5). The miss rate is the percentage of
time a relevant file was not found in the Chained Bloom
Filter. As we see, when queries contains more popular
keywords (above 80th percentile), miss rate is very low,
and it increases when queries contain unpopular keywords.
This demonstrates effectiveness of our technique in retaining
popular files in the Chained Bloom Filter. In Figure 5, we
study the issue of False Positives, where we plot the number
of times an irrelevant file was returned from our Chained
Bloom Filter based on no. of Bloom Filter bits. Note that
by irrelevant files, we mean files that did not contain any
of the keywords in the query. We see that as the number
of Bloom Filter increases, the number of irrelevant files
returned goes down dramatically. This trend is significant
considering that no. of files in the database was 2000, and
even a small addition of bits can significantly lower False
Positives as database size increases.

D. Performance Evaluation of Tier 1 w.r.t. α

Finally, we study the impact of letting the user modify
α in Figures 6 and 7. When α is set low, the search
overhead increases, along with the accuracy, while when
α increases the reverse happens. This trend has important
impacts particularly from the perspective of pricing and
incentive management in p2p systems. As we can see,
while increased search overhead does in bring in improved
accuracy of search, the relationship is not linear. Should
the system decide pricing mechanisms based on accuracy
or should it decide based on the overhead? How can the
system resolve in tradeoff in designing optimal pricing and
incentive management schemes by exploiting this trend is
part of future work. This problem is more challenging when
users themselves can change the parameter α.

V. CONCLUSIONS

In this paper, we address content retrieval in mobile p2p
networks by first modeling the retrieval process as a Logistic

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000

S
e
a
rc
h
T
im

e

Average Number of Files in Database

L=4, PS
L=4, ES
L=6, PS
L=6, ES
L=8, PS
L=8, ES

Figure 2. Search Time vs. Avg. No. of Files
in Database for Different Query Lengths

30

35

40

45

50

55

60

65

70

0 1000 2000 3000 4000 5000 6000 7000

A
n
g
le
in
D
e
g
re
e
s

Average Number of Files in Database

L = 4, PS L = 4, ES

L = 6, PS L = 6, ES

L = 8, PS L = 8, ES

Figure 3. θ vs. Avg. No. of Files in
Database for Different Query Lengths

0

10

20

30

40

50

60

70

80

90

100

80 100% 60 79% 40 59% 1 39%

M
is
s
R
a
te

(%
)

Query Rank Percentile

Figure 4. Miss Rate vs. Query Rank
Percentile

0

5

10

15

20

25

0 10 20 30 40 50

A
v
e
ra
g
e
%
o
f
T
im

e
Ir
re
le
v
a
n
t
F
il
e
s
a
re

R
e
tu
rn
e
d

Number of Bits in CBF

Figure 5. Percentage of Irrelevant Files vs.
No. of Bloom Filter Bits

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250

A
v
e
ra
g
e
S
e
a
rc
h
T
im

e

Query Length

0.5

2

Figure 6. Search Time vs. Query Length
for Different α

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

A
n
g
le
in
D
e
g
re
e
s

Query Length

0.5

2

Figure 7. θ vs. Query Length for Different
α

Function for overhead minimization, and designing a novel
Chained Bloom Filter technique for popularity management.
On-going work considers incentive and pricing schemes.

ACKNOWLEDGMENTS

The authors would like to thank University of Missouri
Research Board, and University Transportation Center at
Missouri S&T for funding part of this research.

REFERENCES

[1] J. Burke, D. Estrin, M. Hansen, and et. al., “Participatory
sensing,” in Proceedings of Workshop on World-Sensor-Web
(WSW06), Colorado, USA, 2006.

[2] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, and et. al., “Sens-
ing meets mobile social networks: the design, implementation
and evaluation of the cenceme application,” in Conference on
Embedded network sensor systems. ACM, 2008.

[3] L. Humphreys, “Mobile social networks and social practice:
A case study of Dodgeball,” Journal of Computer-Mediated
Communication, vol. 13, no. 1, pp. 341–360, 2008.

[4] J. Zhao and G. Cao, “VADD: Vehicle-assisted data delivery in
vehicular ad hoc networks,” IEEE Transactions on Vehicular
Technology, vol. 57, no. 3, pp. 1910–1922, 2008.

[5] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularity aware
content sharing scheme in vanets,” in Proceedings of IEEE
ICDCS, Canada, June 2009.

[6] L. Chen, B. Cui, H. Shen, W. Lu, and X. Zhou, “Efficient
information retrieval in mobile peer-to-peer networks,” in
Proceedings of ACM CIKM, 2009, pp. 967–976.

[7] M. Fiore, C. Casetti, and C. Chiasserini, “Efficient retrieval
of user contents in MANETs,” in IEEE Infocom, 2007.

[8] T. Repantis and V. Kalogeraki, “Data dissemination in mobile
peer-to-peer networks,” in Proceedings of ACM MDM, 2005.

[9] G. Erkan and D. Radev, “LexRank: Graph-based lexical cen-
trality as salience in text summarization,” Journal of Artificial
Intelligence Research, vol. 22, no. 1, pp. 457–479, 2004.

[10] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based
and knowledge-based measures of text semantic similarity,”
in Proceedings of the National Conference on Artificial Intel-
ligence, vol. 21, no. 1, 2006, p. 775.

[11] T. Hasegawa, S. Sekine, and R. Grishman, “Discovering
relations among named entities from large corpora,” in Pro-
ceedings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Computational
Linguistics, 2004, p. 415.

[12] A. Broder and M. Mitzenmacher, “Network applications of
bloom filters: A survey,” Internet Mathematics, vol. 1, no. 4,
pp. 485–509, 2004.

