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DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS

By

Isanaka, Sriram Praneeth, Austin Das, and Frank Liou



Summary

This project focused on the design and production of metallic bipolar plates for use in PEM fuel
cells. Different metals were explored and stainless steel was found out to be best suited to our
purpose. Following the selection of metal, it was calculated that to produce 0.7 W of power, the
bipolar plate should have an active surface of 25cm?. The bipolar plates were designed with
different flow field patterns and manufactured. Different flow field patterns that were used
were the straight design, serpentine, multiple serpentine, pin-type, interdigitated design and
other custom designs. These plates were then assembled along with MEA, gaskets and the end-
clamp plates to construct a single-cell PEMFC which was then tested on a fuel cell test station.
Different prototypes were designed with respect to the bipolar plates and the end plates to
improve sealing and fuel cell performance. Appropriate loading was done on the single fuel cell

to obtain the required power from the fuel cell.
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1. Introduction

The fuel cell is an electrochemical device that enables the direct and efficient conversion of
chemical energy stored in the fuel along with oxidant into electrical energy. Fuel cells have only
recently started attracting the attention of energy-consuming device manufacturers. This is due
to the advantages that fuel cell has over other types devices. However the widespread
commercialization of fuel cell technology has not been possible due to the high cost of the fuel
cell. Consequently, a lot of research and development effort are going on in a number of major

companies as well as different universities around the world.

1.1. There are many types of fuel cells being currently researched today.

1. Polymer electrolyte membrane fuel cell (PEMFC)
2. Direct Methanol fuel cell (DMFC)

3. Solid Oxide Fuel cell (SOFC)

4. Molten Carbonate Fuel cell (MCFC)

5. Phosphoric Acid Fuel cell (PAFC)

6. Alkaline Fuel cell (AFC)

We shall explain each type briefly:
1. Proton exchange membrane fuel cell (PEMFC) design composes of a proton-conducting
polymer membrane, (the electrolyte), separates the anode and cathode sides. On the
anode side, hydrogen diffuses to the anode catalyst where it later dissociates into

protons and electrons. These protons often react with oxidants causing them to become



what is commonly referred to as multi-facilitated proton membranes. The protons are
conducted through the membrane to the cathode, but the electrons are forced to travel
in an external circuit (supplying power) because the membrane is electrically insulating.
On the cathode catalyst, oxygen molecules react with the electrons (which have
traveled through the external circuit) and protons to form water — in this example, the

only waste product, either liquid or vapor.

Direct Methanol fuel cells (DMFC) use a methanol solution to carry the reactant into the
cell; common operating temperatures are in the range 50-120 °C, where high
temperatures are usually pressurized. DMFCs themselves are more efficient at high
temperatures and pressures, but these conditions end up causing so many losses in the
complete system that the advantage is lost; therefore, atmospheric-pressure
configurations are preferred nowadays. Because of the methanol cross-over, a
phenomenon by which methanol diffuses through the membrane without reacting,
methanol is fed as a weak solution: this decreases efficiency significantly, since crossed-
over methanol, after reaching the air side (the cathode), immediately reacts with air;
though the exact kinetics are debated, the end result is a reduction of the cell voltage.
Cross-over remains a major factor in inefficiencies, and often half of the methanol is lost
to cross-over. Other issues include the management of carbon dioxide created at the
anode, the sluggish dynamic behavior, and the ability to maintain the solution water.

The only waste products with these types of fuel cells are carbon dioxide and water.



3. Molten Carbonate Fuel cells can operate at 600 degrees Celsius and uses CO as the fuel
at the cathode and hydrogen at the anode. The high temperature allows for carbon to
be present, but also sulfur can poison the cell in small quantities. Carbonate ions are
produced at the cathode and flow across the membrane to react with the hydrogen to
form electrons, water and carbon dioxide. The temperature is high enough for
additional power production through cogeneration of steam and low enough eliminate
the need of expensive catalysts and containment required in the SOFC. The efficiency
using this system has risen to 50% in a combined (electrical and steam) cycle. MCFC, like

the SOFC, is also used for mega-watt size power plants because of its heat.

4. Solid oxide fuel cells (SOFC) which operate at the highest temperature (1000 - 1100
degrees Celsius) are not the most reactive because of the low conductivity of its ionic
conducting .Many advances have been made in solid oxide fuel cell (SOFC) research to
increase the chemical to electrical efficiency to 50%, but because of the conductivity
and the heat, it has been used mainly in large power plants which can use the
cogeneration of steam for additional power. Because of the high temperature, the cell
requires no expensive catalysts, or additional humidification and fuel treatment
equipment which exclude the cost of these items. The primary drawback to this type of
fuel cell is the cost of the containment which requires exotic ceramics which must have
similar expansion rates. SOFCs are now being considered for large power plants and for
industrial applications because of its electrolytic resistance to poisoning which allows

internal reforming of many carbon compounds into hydrogen to create power



Phosphoric acid fuel cells (PAFC) are the oldest type whose origins extend back to the
creation of the fuel cell concept. Many different acids have been used in order to boost
performance such as sulfuric, but when the temperature increases above 150 degrees
Celsius, high rates of oxygen reduction are possible which enable phosphoric acid to
perform best. The temperature allows the cell to tolerate 1-2% CO and a few PPM of
sulfur in the reactant stream which benefits the steam reforming process by reducing
the requirement of pure hydrogen input to the anode. The heat generated is not
enough for cogeneration of steam, but is able to warm water and act as a heater for an
increased overall efficiency. The electrolyte is flanked by porous graphite carbon coated
with Teflon to allow gases to the reaction sites, but not allow the liquid electrolyte out.

The efficiency of this system is much lower than that of other systems at 40%.

Alkaline fuel cells (AFC) are the most temperamental of all fuel cells; it can produce the
maximum amount of energy (80% efficiency when used as a water heating device). They
use KOH (potassium hydroxide) electrolytes because it is the most conducting of all
alkaline hydroxides, but this requires extremely pure hydrogen and oxygen input to
avoid poisoning. The cell cannot internally reform any fuel because of the 80 degree
Celsius cell operating temperature. Hydrogen at the anode reacts with the electrolyte
creating water and two electrons which both meet at the cathode with oxygen to
complete the circuit. The electrolyte constantly flows through the cell which provides
cooling by convection the porous (and catalyzed) graphite electrodes from which it picks

up hydroxyl ions and a small amount of water in the process. Because of the liquid



nature of the electrolyte, semi-permeable, Teflon coated carbon material is used as
electrodes which are heavily catalyzed as compared with other types of fuel cells

because of the low operation temperature

For this project, we are basically concentrating on the PEMFC. The polymer electrolyte
membrane fuel cell (PEMFC) is one of the most widely researched fuel cell technologies
because it offers several advantages for transport, power for varying devices and many other
applications. Its low-temperature operation, high power density, fast start-up, system
robustness, and low emissions have ensured that a majority of major corporations are actively
pursuing PEMFC research and development. However there are still some technical barriers to
overcome before fuel cells are significantly able to be manufactured on a mass scale. The
biggest challenge to the development of the Polymer Electrolyte Membrane (PEM) fuel cell for
any application is the reduction in cost of the fuel cell stack components i.e. the bipolar/end
plates, catalyst and electrolyte membrane.
Most of the research has been focused on PEMFC’s with single cells and on their components,
membrane electrolytes, catalysts and structure, electrochemical reaction mechanisms and
kinetics, as well as electrode materials and preparation. Improvements in cell design and
manufacturing have further increased power, while reducing manufacturing costs, which is
quite essential if fuel cells are to compete with other power generating devices.
1.2. The main components of a fuel cell are

1. MEA (Membrane electrode assembly)

a. GDL (Gas diffusion layer)



b. PEM membrane
2. Bipolar plates
3. Gaskets

4. Endplates

1.2.1. MEA (Membrane Electrode Assembly)

Proton exchange membrane fuel cell

Hydrogen fuel is channeled through field flow
o plates to the anode on one side of the fuel cell,

while oxidant (ox ygen or ar) is channeled to the
cathode on the other side of the cell.

\ Backing Iayeri Oxidant

H;/(I[‘Og'y\°xidant flow field

The polymer electrolyte
e membrane (PEM) allows

only the positively
charged iors to pass
through it to the cathode.
The negatively charged
electrons must ‘mﬁ
along an extemal circuit
to the cathode, creating
an electrical cumrent.

At the anode, a
platirum catalyst
causes the
hydmogen to split
into positive
hydrogen ions
(pmhn:) and
negatively charged
elecuons.

Unusedqy
fuel /
Anode

(negative)

Polymer At the cathode, the electrons
electrolyte and positively charge
membrane hydrogen ions combine with

ox ygen to form water, which
flows out of the cell.

Figl: Construction of a PEM fuel cell
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Fig2: Reactions between the hydrogen and oxygen in the MEA and GDL

The PEM is sandwiched between two electrodes which have the catalyst embedded in them.
The electrodes are electrically insulated from each other by the PEM. These two electrodes
make up the anode and cathode respectively. The PEM is a proton permeable but electrical
insulator barrier. This barrier allows the transport of the protons from the anode to the cathode
through the membrane but forces the electrons to travel around a conductive path to the
cathode. The electrodes are heat pressed onto the PEM. Commonly used materials for these
electrodes are carbon cloth or Toray carbon fiber paper. Platinum is one of the most commonly
used catalysts; however other platinum group metals are also used. Ruthenium and platinum

are often used together, if CO is a product of the electro chemical reaction as CO poisons the
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PEM and impacts the efficiency of the fuel cell. Due to the high cost of these and other similar
materials, research is being undertaken to develop catalysts that use lower cost materials as
the high costs are still a hindering factor in the wide spread economical acceptance of fuel cell
technology.

For a given membrane electrode assembly (MEA), the power density of a fuel cell stack can be
significantly increased by reducing the profile of the bipolar plates. A key prerequisite for many
power applications is the production of compact and lightweight PEMFC stacks which may be
achieved with appropriate selection of materials. Bipolar plate designs as a whole, and flow

channel layout configuration are potential areas of research.

Mlermbrani Flecirk:

f Assembly

Cias Flow channels

Y,

Fipoikar Plase
Rapsaat JH

Fig 3: Stack components of fuel cell 5]

1.2.2. Bipolar plates
The bipolar plates for PEMFCs are explained in detail later on in the report.

1.2.3. Gaskets
A gasket is expected to create and maintain a seal for a specified lifetime, while
remaining impervious to relevant liquids/gases and compatible with the specific

environment in which it is used.
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Gasket Types
1) Dynamic: seals moving parts
2) Static: seals non-moving parts (movement still occurs through vibration, shock,
temperature changes, pressure changes, etc.)
Gasket Forms
(1) Conventional compression pre-forms or cut forms
(2) Formed-in-place (high viscosity mastic type)
(a) Liquids cured by activation once in place and exposed to a radiation
source, i.e. microwave, heat, UV light, etc.

(b) Sheets/Films applied to the parts either pre-cut or cut-in-place and then

cured with secondary radiation.

Fig 4: Gaskets used in fuel cells ©
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1.2.4. End Plates/ Clamp Plates
End plates or otherwise called clamp plates are needed at either end of the stack to
apply pressure on the cells to maintain the structure as well as to prevent the gases
from escaping from between the plates. The end plates would have the holes for the

bolts as well as for the inlet and outlet manifolds.

(6]

Fig 5: End Plates for fuel cells
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2. Bipolar plates

2.1. Design

Bipolar plates account for the bulk of the stack, hence it is desirable to produce plates with the
smallest possible dimensions permissible (i.e. <3mm in thickness). Bipolar plates constitute
more than 60% of the weight and over 30% of the overall cost in a fuel cell stack. For this
reason, the weight, volume and cost of the fuel cell stack can be significantly reduced by
improving layout configuration of the flow field and use of lightweight materials. Different
combinations of material, flow field layouts and fabrication techniques have been developed
for these plates with the aim of obtaining high performance and economic advantages. Bipolar
plates are plates having flow fields on both sides of the plate i.e. one side of flow fields as the
anode side and the other side as the cathode side. The cathode side would serve the adjacent
cell. The bipolar plates are also otherwise called as separator plates. Sometimes for larger
capacity fuel cells, cooling becomes an issue for the performance of the fuel cell. Therefore, in
such cases cooling is achieved by accommodating separate cooling plates after a few cells in
series. In some designs, one of the reactants flows on one side of a plate, while a cooling fluid
flows on the other side of the same plate in order to remove the waste heat generated in the
cell. Also very importantly , these bipolar plates collectively along with the use of gaskets would
have to keep the fuel and oxidant apart, preventing them from mixing with each other,
otherwise the performance of the fuel cell would depreciate leading to sometimes safety
concerns. Bipolar plates have been made usually out of graphite but lately focus has been on

developing metallic bipolar plates. In developing metallic plates, different factors and
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properties had to be taken into account. The chosen metal should be a good electrical
conductor, structurally strong, good corrosive resistance towards acids and bases, high gas
impermeability and easy to machine for the purpose of mass manufacture Bl The metals

chosen were stainless steel, aluminum and copper.
2.2. Functions

Bipolar plates constitute one of the most important components in PEMFC stacks and must
perform a number of functions well and must do so simultaneously in order to achieve good
stack performance and lifetime. Bipolar plates supply the reactant gases through the flow
channels to the electrodes and also electronically connect one cell to the other in the
electrochemically stack. These plates also provide structural support for the thin and
mechanically weak MEAs and also as a means to facilitate water management within the cell.
Also sometimes in the absence of dedicated cooling plates, the plates also facilitate heat
management. Plate designs (flow field designs) and materials facilitate these functions. Bipolar
plate topologies can include straight, serpentine, or interdigitated flow fields, internal
manifolding, internal humidification and integrated cooling. Therefore optimal design must be
found for the bipolar plates because the above functions have conflicting requirements on the

bipolar plate design.
2.3. Requirements

The essential requirements for a bipolar plate is the ability to uniformly distribute the reactant
gases over the respective active electrode surfaces, high electrical conductivity, high
mechanical strength for stack integrity, impermeability to reactant gases for safe operation,
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resistance to corrosion in severe cell environment over its lifetime, cheap materials, easy and

automated fabrication for low cost.

2.4. Customer Requirements

The customer for this project was the US Air force which had the following requirements; the
fuel cell should be portable for the purpose of recharging portable devices like mobiles and the
like. Therefore for this purpose, the fuel cell should give out an output of around 5W. Another

requirement was to keep the cost of development of the fuel cell as low as possible.

2.5. Conceptual design

Our first step in developing bipolar plates for the PEM fuel cell was to study various designs and
shapes for the overall plate. This was done to determine the ease of designing and
manufacturing the BPP plate, ease to assemble the plates for making stacks and also to reduce
the amount of material that would be wasted during manufacture. Some of the designs that
were studied for the bipolar plate were circular, triangle, square, rectangle, pentagon, hexagon
and octagon. Below are some of the designs for the overall plate. For each design we designed
three variations i.e. having pin-type, straight and serpentine flow fields. The below designs
were drawn with the purpose of simulating the flow in Ansys, therefore channels are only

modeled as solids.
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Fig 6: Different Concepts for design
(a) Circular plate design
(b) Square plate
(c) Pentagonal plate
(d) Hexagonal plate
(e) Octagonal plate




For the purpose of making the fuel cell portable, it was decided to develop an air-breathing fuel
cell i.e. the anode side would be open to the environment instead of carrying oxygen in a
cylinder. Storing oxygen in a cylinder is an expensive process which would drive up the cost of

the fuel cell, therefore the need of an air-breathing fuel cell.

2.6. Channel cross-section

The fluid flow channels of the bipolar plate are typically rectangular or square in cross-section,
even though other configurations like triangular, semi-circular and spherical have been
explored. The flow channel dimensions range from a fraction of about 1 to 2mm in width and
depth as low as possible (1mm) so as to reduce the fluid pressure loss due to friction losses. The
land width i.e. the unmachined section between two adjacent channels was also considered as
this is the area which attracts the electrons from the reactions taking place in the MEA. If we
design the plate having bigger land widths, then the active area of the MEA available for
absorption of the reactant gas is reduced which in turn reduces the performance of the fuel cell
and if we reduce the land width, the collection of electrons is reduced. Therefore when
designing the active area of the BPP, we should have a fine balance between the area under the
flow field and the land. The most common method of machining the fluid flow channels on the
bipolar plates requires the engraving or milling of the flow channels onto the bipolar plate
surface. It also has been found that having larger channel size causes the reactant gas to have a
turbulent flow which is to be avoided as it would interfere both in the flow of the gas through

the channels as well as the absorption of the gas into the MEA.
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2.7. Flow-field layout design

One of the main obstacles towards large scale commercialization of fuel cells is the gas flow
fields and the bipolar plates which include the development of low-cost lightweight
construction materials, optimal design and fabrication methods and their impact on the PEMFC
performance. The PEMFC performance is generally studied on the basis of its energy efficiency
and power density. In spite of all the R&D efforts, the design of the flow fields and bipolar plate
remain one of the important issues for cost reduction and performance improvement of PEM

fuel cells.

A variety of different designs have been developed. Some of the design that have been used

are

1. Pin-type flow field

2. Parallel/Straight flow field

3. Serpentine flow field

4. Multiple Serpentine flow fields
5. Inter-digitated flow fields

6. Other miscellaneous flow field designs

2.7.1. Pin-type Flow field

The flow field network in this type of design is formed by many pins arranged in a regular
pattern. These pins are usually cubical or circular in cross-section. Usually, both the cathode

and anode flow field plates would have the regularly spaced pins protruding from the plate and
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the reactant gases would be made to flow across the plates through the intervening grooves
formed by the pins. As a result of this type of flow, there is a low reactant pressure drop.
However, reactants flowing through such flow fields tend to follow the path of least resistance
which may lead to the formation of stagnant areas, thus causing uneven reactant distribution,

inadequate water removal causing poor fuel cell performance.

Pintype channels

Fig 7: Bipolar plate with pin-type flow field design

2.7.2. Parallel/Straight flow fields

This type of flow field design entails the gas flow field plate having a number of parallel flow
channels which are also connected to the gas inlet and exhaust. It has been seen that using this

type of design over extended periods of operation causes low and unstable cell voltages
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because of the gas flow distribution and the water management. The hydrogen gas tends to
follow the path of least resistance and would likely follow the channels along the plate walls,
ignoring the channels at the centre of the plate leading to under-utilization of the plate i.e.
stagnant areas are being formed at various areas in the plate. During the operation of the fuel
cell, water droplets get also accumulated in the channels leading to decreased performance as
a separate force would be required to push the water droplets through the channel out of the
plate. Therefore due to the poor gas flow distribution and inadequate water removal, the

performance of the fuel cell is affected.

Another aspect in this type of design is that there is low pressure loss in the flow channels due

to their being small in length.

Qutlet Manifold

Fig 8: Bipolar plate with straight/parallel type flow field design
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2.7.3. Single Serpentine Flow field design

In this type of design, we used a continuous flow type design having an inlet at one end and an
outlet at the other end and which follows a serpentine path. Using this type of serpentine flow
field forces the reactant gases to flow across the entire active area (in this case 25cm?) of the
bipolar plate which in turn eliminates stagnant areas caused by improper gas distribution.
However this type of serpentine flow field forces the gas to follow a relatively long flow path
which causes a large pressure drop along the channels from the inlet to the outlet. But one
problem with having a single serpentine channel is this type of flow field is more prone to
getting blocked due to the formation of water droplets in the channels especially for higher

current densities.

Fig 9: Bipolar plate with Single Serpentine flow field design

Therefore, for a higher current density operation or if a large active area is present , it would be

better to have multiple serpentine channels instead of a single channel which in turn would
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limit the pressure drop along the channels and also help in the water management. Here, even
if one channel is blocked, the fuel cell can still operate due to the presence of the other channel

although with a lower efficiency.

Multiple Serpentine
Channels

Fig 10: Bipolar plate with multiple serpentine flow field design
2.8. Preliminary Flow Field Simulations

Before going forward on further designs, we have to analyze the flow parameters of the
reactants through the bipolar plate. This was done by using the Fluent Software. The model of
the bipolar plate was created along with Gas diffusion layer (GDL) and the MEA. We used the
following assumptions for both the GDL and MEA: the viscous permeability of 0.44 * 10™(m?)

and inertial permeability of 34 * 108 (m) .
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Fig 11: Reactant flow in Straight/parallel flow field design
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Fig 12: Reactant flow in pin-type flow field design

The above figures show the flow into bipolar plates both a straight/parallel flow field design
and a pin-type design which then is forced into the GDL and then MEA. For this analysis we
wanted to find the effect the width of the channel would have on the type of flow, therefore
we designed the plate having wider channels (about 5mm). The image shows the mass fraction
of the reactant i.e. in this case air. From the analysis, we can see that due to the wider
channels, the reactant gas had a turbulent flow through the channels which in turn would affect
the rate of diffusion on the gas into the GDL and MEA. This is unacceptable for us so therefore,
we should aim to keep the channel width to a range of (2mm — 3mm). We also notice that the
reactant gas doesn’t flow into the area in the GDL at the land areas i.e. the straight/parallel
obstructions or the pins in the corresponding plates as can be seen below. The depth of the
channels seems to have an effect on the flow of the reactants. Deeper the channel, the better it
is for easier flow of the reactant gas ® For portable applications, it’s better to keep the

channels having a depth range of around (Imm —4mm).
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The above conclusions are similar to the conclusions reached at the University of Alabama

research team. These results are for a serpentine flow field.
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(a.) Hydrogen consumption due to channel depth
(b.) Hydrogen consumption due to Channel cross-section

(c.) Pressure drop for different cross- sections
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Fig 14: Reactant flow into the MEA from the bipolar plate

Therefore this phenomenon causes parts of the MEA to be inactive leading to decrease in

performance of the fuel cell. The above images suggest that we also have to reduce the amount
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of cross-sectional area of the land areas. But this would have to be a balancing act as having too

thin or small land areas like too small pins or tin parallel sections would cause tear in the MEA

and GDL. Therefore we have to choose an optimum measurement of about 2mm — 4mm.

Taking into consideration, the above results and observations, i.e. using thinner channels for

the flow field, balancing the area covered by the active area of the channels and the land width,

we designed the following bipolar plates.

2.9. Bipolar Plate — Material Saving

One of our main goals for this project was to reduce the cost of the fuel cell as much as possible

and one area where this was possible was to reduce the amount of material used in the

manufacture of the bipolar plates. For example, we can see here in this square plate

I.-_-:.II

| |
| |

Fig 15: Material savings in a square bipolar plate

In the above case, we were able to obtain savings of about 16.5%

Therefore it was decided to remove all the extraneous area around the active area of the

bipolar plate.
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3. Multiple Serpentine Flow field — (Megamet Industries design)

Intet Manifold

Muitiple serpentine
flow fields

Outlet Manifold

Fig 16: Bipolar plate with Multiple Serpentine Flow fields

This plate was successfully manufactured by the company Megamet Industries. But after testing
this plate, severe leakage of the reactant gas was present. This plate was difficult to clamp
together and seal properly due to the non-availability of the extraneous area around the active
area for the purpose of gasketing and also the ears for the bolts were way too thin which
caused it snap off when too much force was used to clamp the plates together. Another issue
we faced was that having too thin channels and complex designs would prevent the easy
passage of the reactant into the plate therefore impacting the performance of the fuel cell due
to the starvation of the reactants. Therefore we left the extraneous area for the purpose of

provide placing the gaskets and also to provide support to the ears.
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4. Inter-digitated Flow field design

All the above designs incorporated continuous flow channels from the inlet manifold to the exit
manifold. In this type of design, the reactant gases flow from the inlet manifold to the outlet
manifold via molecular diffusion through the gas diffusion layer where it also undergoes the
required electrochemical reaction and also generate power. One issue with this type of design
is that molecular diffusion is a slow process which in turn would cause large concentration

gradients of the reactants across the GDL’s and BPPs.

An inter-digitated system consistes of dead ended channels on the active surface area. The
channels are not continuous form the inlet manifolds to outlet manifolds. The reactant gases
are made to diffuse under pressure through the MEA to reach the other channels connected to
the outlet manifold thus developing a convection velocity in the MEA which would help in the
removal of water formed. Therefore this type of design is effective in preventing flooding
caused due to water formation and also provides better fuel cell performance at high current

densities.
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Fig 17: Mechanism of inter-digitated flow field design [10]

Fig 18: The machined bipolar plate with inter-digitated flow field design

This design performs better than the conventional continuous flow field design. Due to the
problems faced by us when clamping the previously designed plates, it was decided to use
clamp/end plates at either end of the BPP with the bolts passing through them instead of the

BPP. Therefore for this purpose we designed a couple of clamp/end plates for use in our setup.
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Our first prototype design had the anode side open for easy access to the air necessary for the
reactions with the cathode plate designed appropriately to ensure that the air reaches the
MEA, grooves on the inside of the plates to position the BPPs, 8 bolt holes to provide enough
compressive force and also tapped inlet and outlet manifolds. We also added sleeves to the

bolts so as to prevent any short circuit occurring in our setup.

Gaps for air entry

Fig 20: The fuel cell along with the open cathode side clamp/end plates and the anode side end
plates with the inlet/outlet manifolds
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After using the clamp plates, the sealing was significantly improved. But while clamping, we had

to ensure that the clamping force was uniform across the plate i.e. at each of the bolt areas.

Another issue that cropped up was the possibility of the open sided clamp plate not ensuring
uniform compressive pressure on the anode plate which in turn would have affected the
contact between the MEA and cathode plate and also caused uniform sealing problems.
Therefore to ensure this does not happen, we designed a second clamp plate prototype that
was a closed plate and also redesigned the cathode plate to include parallel grooves open to

the MEA and atmosphere to ensure that air does reach the MEA.

Fig 21: The cathode plate with open grooves

We also reduced the thickness of the clamp plates from prototype 1 as it was deemed

unnecessary and which also added significantly to the weight of the entire fuel cell.
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Fig 22: Clamp Plate (Prototype 2)
(a.) Anode side clamp plate with respective inlet

and outlet manifolds
(b.) Closed Cathode side clamp plate
(c.) Top view of assembly

To ensure that the grooves did not cause bowing to occur in the MEA and also to increase area
of contact with the MEA to collect more electrons, we welded a mesh onto the plate which
would come in contact with MEA. This mesh ensured adequate air reached the MEA and also

increased the capacity to collect electrons from the MEA.
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Fig 23: The meshed cathode air plate

Incorporating the above design changes, we were able to notice comparatively better
performance than before with other types of flow fields. We were able to obtain around 0.47 W
when tested on the fuel cell test station. Also the sealing of the plates was found to be
significantly better than before but was still not matching our requirements. Therefore a better

way to seal the plates was needed to be found.

4.1. Hybrid Inter-digitated flow field design

This is an entirely new design. This incorporates the use of an exhaust channel totally separate
from the flow field channels of the bipolar plate and also a separate groove for the gasket. This
design follows the same theory as that of the inter-digitated design. The main purpose of this
design was to improve the sealing of the bipolar plates having a theoretically similar inter-

digitated flow field design.

36



Channelforexhaust
reactant gas

Outlet Manifold

Flow fields

Fig 24: Hybrid Inter-digitated flow field design

As we can see from the above figure, the plate has a conventional straight/parallel flow field
design except without the outlet manifold. The reactant gas flows through the flow fields and
into the MEA by molecular diffusion and then flows out into the exhaust groove to the outlet
manifold. This type of design increases the active area available for diffusion when compared to
the inter-digitated design and also provides a better sealing than the previous designs due to
the polished surface and the dedicated groove for the gasket around the active area of the BPP.
The groove for the gasket is lesser in depth than the thickness of the gasket to ensure that on
compression, the gasket due to its elasticity would flow outwards and fill all the gaps that might
be present and ensure proper sealing that we need. Using the redesigned clamp plates and
anode plate did provide us with comparative better sealing than before but it still wasn’t
enough. The reactant gas; in this case was hydrogen is extremely small on a molecular level and

would just require a small gap to escape. Therefore to ensure proper fit and sealing between all
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the components namely the bipolar plates and the clamp plates, we polished all the surfaces
that would come into contact with each other using sandpaper having grit size of 600, 800,
1000, 1500, 2000 and 2500. We polished the surfaces with the mentioned grit sizes to obtain a
mirror surface which ensured that each adjoining surface had a proper fit. With the help of the
gasket groove and by improving the surface finish of the plates we were able to obtain a

comparatively superior sealing than which was obtained before.

Fig 25: Machined bipolar plate with Hybrid Inter-digitated flow field
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5. Conclusions

The Bipolar plate is one of the essential components in a PEM fuel cell and it performs many
essential functions in a PEM fuel cell stack operation like supplying reactants to the MEAs,
current collection, providing structural support to the MEA, water management & thermal
management. In essence, the success of the PEM fuel cell boils down to the appropriate design
of the bipolar plate. The design of the bipolar plate entails the design of the flow fields on both
surfaces of the plate with optimum design parameters. A variety of flow field configurations
have been proposed here including pin-type, straight/parallel channels, serpentine and multiple
serpentine channels, inter-digitated design and also a hybrid inter-digitated design. Each of
these designs has their own pros and cons and they can be used for different applications. Also,
the design of the plate is not enough for the successful operation of the fuel cell. We should
also have very good sealing between the plates and the MEA. If not, the cell is prone to
reactant leakage which reduces the efficiency of the cell and also leads to a hazardous
environment. We have shown that improving the surface finish of the plates and using gaskets
in their separate grooves around the active area greatly improves the sealing of the bipolar
plates. Therefore improvements in the bipolar plates and the sealing between them can help us
achieve our goals for improved cost and performance for fuel cells and help in the

commercialization of the PEM fuel cell.
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