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Background

= Both steel and FRP jacketing techniques are
available for the seismic retrofitting of RC columns.

» Steel jacketing is ductile and durable. Engineers are
confident with the reliable materials.

» FRP jacketing is light and easy to construct in field
condition. It has no issue related to steel corrosion.

» It would be desirable to combine several
advantages of the two techniques: ductile, durable,
light in weight, and reliable materials. Using
stiffened thin steel sheets (galvanized or stainless
steel) seems to meet the above requirements.
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Obj

= Develop a new seismic retrofit technique with
stiffened thin steel sheets for columns and steel
plates for beam-column joints

» Test concrete ring specimens wrapped with thin
steel sheets to understand the strength and failure
modes of nailed joints

= Design the retrofit scheme for an existing bridge in
southeast Missouri

» Test two 4/5-scale beam-column specimens to
validate the performance of the retrofit scheme
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New Retrofit Scheme
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Nailed Joint Failure Modes

Specimens
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Nail Pattern 1.

Joint Area

22in | 16in

TS -
1/32in Steel Sheet

Top View Lap Splice vs. Self Lock Joint
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Nail Pattern 2.
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Nailed Joint Failure Modes

Test Setup

Strain Gage Joint Area Strain Gage Joint Area
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Steel Bearings
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Nailed Joint Failure Mocdles

Test Results (12 Specimens)

F/C Ratio vs. Nail Pattern

—e— 3-nail & loadl
—m— 5-nail & loadl

5 .\\_// Snail & load2
_ — /

5-nail & load2

F/C Ratio

2 A A

>~

0 \ \ \ \ \
1 1.25 15 1.75 2 2.25 2.5 2.75

Nail length
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e Self lock joints (3-nail pattern) always fail in pull-out of nails due
to potential bending effects on the outer steel sheet while splice
joints (5-nail pattern) always fail in bearing of the steel sheets.

e The ratio of failure to crack loads of the 5-nail pattern specimens
are always greater than that of the 3-nail pattern specimens.
Strength is proportional to the number of nails in joints.

* The strength of joints is independent of the length of nails.
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Test Data of Lap Splice Joints

Rows | Number of | Load at | Strain at | Strain at
of Nails | specimens | Peak (Ibf) | Peak (%) | Break (%)
2 4 1990 0.39 0.59
3 4 2360 0.68 0.88
4 4 3370 1.94 2.66
3 8 4100 3.23 3.36
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* One specimen damaged before testing
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Typical Load-Strain Relation

2-Na..i-lmJoint 3-Nail Joint
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Retrofit Goal
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* Increase the ductility of the RC column

= Eliminate the potential shear failure of
the column

» Increase the shear/flexural capacity of
the cap bheam

» Eliminate the potential shear failure and
reduce the stiffness degradation at the
beam-column joint
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Retrofit Design

Column Strengthening for Ductility

i 0Me, —0.004)Df%
i nr
uj “uj

€CU = C¢U
c——neutral _axis_length—-9.2in
¢u = /u¢¢y

4, ——0bjective _curvature _ ductility ——4.57
¢, ——curvature _at _ yield ——0.00027in"*
D ——column _ diameter ——24in

f. ——strength_of _the _confined _concrete ——6.59ksi
f; ——ultimate _ jacket _ stress ——50ksi
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Retrofit Design

Column Strengthening for Shear

VO ¢ (Vc +Vs +Vs)
t. > -

'~ 05zf,Dcotd

V, ——shear _demand _on _column =128.56kips
¢, ——factor _of _safety _ for _shear =0.75
V.,V,,V, ——shear _strengths _ due _to_the _ concrete, stirrups _and _ axial _ force

V, = 29kips
V, = 41.1kips
V, = 35kips

f, ——design _ jacket _ strength = 50ksi
D ——column _ diameter = 24in
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0 ——the _greater _of _35° _or_the_column_corner _to_corner _angle = 35°
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Retrofit Design
Statically Determinant (X-Shape Plate)
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Retrofit Design

Thickness of Horizontal Plates Asumitigrk:

> Cement/Epoxy grounting Steel angle " % p v
BEEL & R i ] 1. Tension in vertical plates is
: e T L e men SigNificantly smaller (<20%)
E = — » = than that in diagonal plates. It
; ! is neglected in calculation.
1t 2. Diagonal steel plates are fully

yielded. The total tension

force on two diagonal plates is

T=2x50ksix12"x0.25"=300Kips
e The load on the top plate is

equalto
c— 100845 —q pigj

fixed end

3
A

Analytical and

computer models
B . A=25"x17"=425 in?

U3=0.1834"<L/100=0.25"

M The L/100 allowable deflection
corresponds to that of the story
drift of a steel frame (Table

“ﬁ:."ﬁ'.r'c'.:}\‘z.’:."f?@ Zp ¥ 1617.3.1, IBC2003) =
il e L L P Thickness=0.25"




Retrofit Design

Summary

Retrofit component Design thickness Actual thickness
(in) (in)

Steel ring for column 0.25 0.5*
ductility
Steel sheet for column 0.025 0.036(20GA)*
shear
Steel plate for beam- 0.25 0.25
column joint shear
X-shape steel plate for 3/32 3/32

joint shear

* Based on availability or ease of fabrication
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Retrofit Design

3rd Specimen Details

0.5" steel tube

f
{ 3% 2 weld
B 3

: i J
4 weld 2 22

X-Shape Steel Plate
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Retrofit Design

4™ Specimen Details
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Test Setup

31d Specimen 4t Specimen
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3rd Specimen
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Microstrain (mm x 10°/mm)
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Strain on Vertical Steel Plates
(3" Specimen)
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Unretrofitted vs. Retrofitted Column
(379 Specimen)

Shear failure of unretrofitted -;' It

Plastic hinge

formed at the

beam-column
joint of the
retrofitted
specimen
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Unretrofitted vs. Retrofitted Joint
(3¢ Specimen)

Excessive cracks of

unretrofitted specimen

Few cracks of
retrofitted specim
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Strain on Steel Rings
(4™ Specimen)
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Strain onVertical Steel Plates
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Conclusions

» Lap splice nailed joints of two thin steel sheets are very
effective. Their strength is generally proportional to the
number of rows of nails. Lap splice joints ultimately fail in
bearing of the sheets.

= Self lock nailed joints of two thin steel sheets can be as
effective as lap splice joints provided that sufficient space at
the end of the sheets, nailed with two or more rows of nails,
is available for shear deformation of the joints. Such a well-
designed joint did not fail in pull-out of nails that happened
to the concrete rings wrapped with a lock joint without
space. The number of the rows of nails is significantly
smaller than that of the lap splice joints.

» Both lap splice and self lock joints are sufficient in providing
strength of nailed steel sheets for column shear retrofitting.
Their strength is independent of the length of nails due to
concrete cracks.
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Conclusions

» Steel rings as stiffeners to thin steel sheets in the plastic
hinge zone can enhance the column ductility substantially. A
spacing of 7.5 cm seems reasonable to prevent buckling of
the thin sheets.

= Retrofitting a beam-column joint with steel plates (one wrap
around the cap beam on both sides of the column and x-
bracing between two wraps) can effectively reduce the
number and width of cracks at the joint. The shear force at
the joint is mainly transferred by the x-bracing, not the
vertical plates in the two wraps.

= Longitudinal prestress on the cap beam can further control
the development of cracks at the beam-column joint so that
the longitudinal rebar in column will not be pulled out of the
joint and, as a result, the stiffness of the beam-column
assemblage will not be degraded significantly.
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