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Composite Hydrogen Storage Cylinders 
  

by 
 

K. Chandrashekhara, Professor, Department of Mechanical and Aerospace Engineering 
and 

Jian Chen, Ph.D Student 
           
Project Summary (Year 1) 
 
Composite high-pressure cylinders have potential application for hydrogen storage in automotive 
and transportation systems. Safe installation and operation of these cylinders is of primary 
concern. A neural network model has been developed for predicting the failure of composite 
storage cylinders subjected to thermo-mechanical loading. A Back-propagation Neural Network 
model is developed to predict composite cylinder failure. The inputs of the neural network model 
are the laminate thickness, winding angle, and temperatures. The output of the model is the 
failure pressure. The finite element model of the cylinder is based on laminated shell theory 
accounting for transverse shear deformation and geometric nonlinearity. A composite failure 
model is used to evaluate the failure under various thermo-mechanical loadings. The neural 
network is trained using failure results of simulation under different thermal loadings and lay-up. 
The developed neural network model is found to be quite successful in determining the failure of 
hydrogen storage cylinders. 
 
Introduction 
 
The composite high-pressure cylinder is made with a high molecular weight polymer or 
aluminum liner that serves as a hydrogen gas permeation barrier. A filament-wound, 
carbon/epoxy composite laminate over-wrapped outside of the liner provides the desired pressure 
load bearing capacity. The cylinder is capable of sustaining pressures of 5000 psi or higher by 
taking advantage of high modulus, high strength and low specific weight of modern high 
performance composite. To design composite high-pressure cylinders with the most possible 
safety, reliability and minimum weight considerations, the failure of composite structures under 
various mechanical and thermal loadings need to be well understood.  
 
To account for complex composite wall structure and environmental temperature influence, a 
comprehensive finite element model is developed and implemented in commercial finite element 
code ABAQUS to analyze the failure of the composite cylinder. Due to a large number of 
parameters such as varying thermal loads, winding angles, cylinder dimensions and lay up 
configurations, it is a tremendous task to optimize the cylinder design and predict cylinder failure 
pressure through case-by-case finite element analysis simulation. A Back-propagation Neural 
Network (NNk) model is employed to predict the failure pressure using the results obtained from 
a few finite element simulation cases. Three sets of simulation results with various winding 
angles and thermal loadings are applied for Neural Network training. The trained NNk model 
can be used as a tool to predict the failure pressure of the hydrogen storage cylinder under a 
given set of loads. 
 



Finite Element Simulation of Composite Hydrogen Cylinder 
 
A typical structure scheme of hydrogen storage cylinder is shown in Fig. 1. The inner aluminum 
liner is subject to mechanical pressure and temperature. In many current designs, a glass/epoxy 
layer is placed over the carbon/epoxy laminate to provide impact and damage resistance. The 
doubly curved shell theory accounting for out of plane shear deformations and geometric 
nonlinearity is used for the analysis of composite hydrogen storage cylinders.  
 
The composite hydrogen storage cylinder is modeled and meshed using ABAQUS commercial 
Finite Element Analysis code (Fig. 2). A laminated shell element (S8R), based on doubly curved 
shell theory, including membrane bending and transverse shear effects, is used for modeling the 
cylinder. In order to estimate the failure pressure of the cylinder, it is necessary to include failure 
criterion. Tsai-Wu failure theory is utilized to check and report the ply-by-ply laminate failure by 
using user subroutine UVARM. In addition, temperature dependent material properties are 
incorporated in the model by using user subroutine USDFLD so that, at each integration point, 
the material properties are determined by the given temperature. The orientation of each element 
at every ply is handled by subroutine ORIENT according to winding pattern. The comprehensive 
model is then solved by using ABAQUS/standard solver with geometric nonlinearity considered. 
The dimensions considered in the present cylinder analysis are based on a typical design from 
literature. The outer radius of the cylinder is taken as outR = 0.235 m and inner radius inR = 0.22 m 
(Fig. 1). The pressure bearing carbon/epoxy laminate consists of 24 plies with a total thickness of 
28 mm. The protective glass/epoxy layer and liner are 2 mm and 2.5 mm thick respectively. The 
cylinder is subjected to an internal pressure that gradually increases until the first ply failure 
occurs. To manufacture closed cylinders, two types of winding patterns are usually used: hoop 
winding and helical/polar winding. The thickness ratio R (total thickness of helical laminate/total 
thickness of hoop laminate) affects the failure pressure of the cylinder and a range of 0.1 to 2.0 is 
considered. Winding angle of laminae also affects the failure pressure of the cylinder and a range 
of 10◦ to 30◦ for helical winding and 89◦ for hoop winding has been considered based on the 
manufacturing feasibility. The plies in the protection laminate are oriented as 45° angle ply. 
Failure Model for Composite Hydrogen Storage Cylinders by Feedforward Back-
propagation Neural Network 
 
Feed-forward back propagation Neural Network is used to predict the failure pressure of 
hydrogen cylinder. The schematic of the NNk is shown in Fig. 3. The relationship of failure 
pressure and the inputs (thickness ratio R, temperature inside of the cylinder inT , temperature 
outside of the cylinder outT , and filament winding angleθ  ) is modeled by a two-layer (hidden 
layer and output layer) network. Each layer consists of a number of processing units, known as 
neurons (Fig. 3). To obtain an easy training and a robust NNk model, inputs are scaled to a 
desirable range by a designed transfer function T

inf  before entering the input layer. Inputs are 
then passed through weighted connections to the hidden layer and then to the output layer. The 
output P′ is, finally, scaled back to failure pressure P  by a designed transfer function T

outf . The 
number of neurons in the hidden layer and the characterizing weights and biases in the model are 
determined by training the NNk.  
 
 



The input Transfer function  
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The activation function in the hidden layer is the Log-sigmoid function   
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The activation function in the output layer is the Pureline function 
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The relationship of normalized input and output of NNk 
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where N is number of neurons in the hidden layer 

1
o
jW  are weights in the second (output) layer  
h
jiW  are weights in the hidden layer 

ob  is bias in the second (output) layer  
h
jb  are biases in the hidden layer 

and P′  is the normalized output burst pressure. 
 
The output Transfer function  
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where P is the final output burst pressure  
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 is the output training pattern vector. 
 
Training consists of providing a set of known input-output pairs (or patterns) to the network. 
During the backward propagation, weights in each node are iteratively adjusted based on the 
errors using the gradient descent equations. The procedure is repeated until convergence is 
achieved. In this study, the input-output sets are obtained from finite element simulation results. 



The model is trained in MATLAB NNk tool box. The fast training Levenberg-Marquardt 
algorithm is adopted for the training process.  
 
Curve Fitting 
 
The network is trained by using the simulation results from three cases shown in Table 1. There 
are 12 neurons used in the neural network (NNk) model and the learning parameter is set to 0.01. 
After convergence is achieved, the network model is capable of predicting the failure pressure 
for a given cylinder thickness ratio ( R ), temperature distribution ( inT and outT ) and winding 
pattern (θ ). To evaluate the performance of NNk prediction, six test cases (shown in Table 2) 
are studied. The test data from ABAQUS simulation results, for winding angles not included in 
the training (15ºand 25º), are used to compare the predicted results from the trained neural 
network. The performance of the NNk is then illustrated in Fig. 4 and Fig. 5, and the maximum 
errors are reported for each case in Table 2. The test case 1 (T40-40) implies Tin=40℃and Tout 

= 40℃. It can be seen that the simulation results are in good agreement with the results predicted 
by NNk model.  
 
Conclusions 
 
A comprehensive finite element model is developed for composite hydrogen cylinder. Taking 
parameters determining the failure behavior of cylinder as inputs and failure pressure as output, a 
2-layed backpropagation neural network model is developed and used to predict the failure 
pressure. The performance of the trained neural network is then evaluated by comparing the 
predicted values with test cases. The results are in good agreement.   
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Table 1: Lay-up configurations for various winding patterns 
 

Case No. Lay-up Pattern Description 

1 o o
6[±20 /±89 ]  

2 o o
6[±10 /±89 ]  

3 o o
6[±30 /±89 ]  

24 layers with total thickness of 28 mm 

Tin=[25 50 75 100 120 140] oC 

Tout=[25 50 75 100 120 140] oC 

 

Table 2: Testing cases and maximum error of prediction 
 

Inputs Testing Case 

Tin (oC) Tout (oC) θ (Degree)

Max. Error (%) 

1 40 40 15 1.32 

2 30 80 15 -1.54 

3 130 40 15 1.23 

4 40 40 25 1.11 

5 30 80 25 -2.40 

6 130 40 25 -1.00 

 

 

 

 

 

 

 

 

 

 

Figure 1 Structure scheme of hydrogen storage cylinder 
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Figure 2 Finite element model of hydrogen cylinder 

Figure 3 Feedforward Back-propagation Neural Network architecture 
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Figure 4 Comparison of burst pressures 
from NNk and ABAQUS at θ = 15o 
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Figure 5 Comparison of burst pressures 
from NNk and ABAQUS at θ = 25o 
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